
FrontBase® 4.x
Users Guide

Updated 2007-05-31 BB
Because FrontBase is continually being improved, some of the
information in this manual may be inaccurate. Please read the

Release Notes on the FrontBase distribution for the latest up-to-
date information.

FrontBase copyright ©2000 by FrontBase Inc. and its licensors. All rights reserved.
Documentation within these pages may be printed by licensee for personal use. Except for the foregoing,
no part of this documentation may be reproduced or transmitted in any form by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from FrontBase Inc.

FrontBase and the FrontBase logo are registered trademarks of FrontBase Inc.
All other trademarks and registered trademarks are the property of their respective owners. ALL
SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUBJECT TO THE
LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact FrontBase:

U.S.A. and International FrontBase Inc.
26741 Portola Pkwy.
Suite 1E #414
Foothill Ranch, CA 92610

Frontline Software Aps
Blokken 15
DK-3460 Birkerød
Denmark

Ordering Voice: +1 949 636 8026
Fax: +1 949 330 6371

Voice: +45 4582 6262
Fax: +45 4582 0816

World Wide Web http://www.frontbase.com
Technical Support support@frontbase.com
Information info@frontbase.com
Sales & Marketing sales@frontbase.com
Licensing license@frontbase.com
Document Feedback doc-feedback@frontbase.com

FB-3 Users Guide

Table of Contents
1 Foreword 11

1.1 Architecture.. 11
1.1.1 Client/server Architectures.. 11
1.1.2 Relational Database Server ... 11
1.1.3 Highly Scalable.. 11
1.1.4 SQL 92 Query Language... 11
1.1.5 Inherent Interfaces ... 12

2 Introduction 13
2.1 Overview.. 13

2.1.1 Supported Platforms .. 13
2.1.2 Designed with Forethought ... 13
2.1.3 Solid Foundation.. 14

2.2 Standards Compliance ... 14
2.2.1 Full SQL 92 Compliance... 15
2.2.2 Unicode Character Representation.. 15
2.2.3 TCP/IP Client/Server Interaction .. 15
2.2.4 ANSI C Codebase.. 16

2.3 Key Features .. 16
2.3.1 Petabyte Databases, Gigabyte Column Values... 16
2.3.2 FrontBase Security .. 17
2.3.3 Transactions ... 18
2.3.4 Row Level Privileges .. 19
2.3.5 Live Backup... 19
2.3.6 Caching .. 19
2.3.7 Multi-Server Deployment.. 19

2.4 Drivers, Adaptors and Plug-ins ... 19
2.4.1 ODBC... 19
2.4.2 JDBC.. 20
2.4.3 WebObjects 5 Plug-in.. 22
2.4.4 PHP3 and PHP4 Adaptors... 22
2.4.5 Perl Adaptor... 22
2.4.6 Omnis Studio DAM... 22
2.4.7 REALBasic .. 22
2.4.8 Tcl Driver... 22
2.4.9 EOF Adaptor.. 23

2.5 Migration.. 23
2.5.1 FileMaker... 23

FB-4 Users Guide

2.5.2 MySQL .. 23
2.6 FrontBase-Related Processes .. 23

2.6.1 FBExec... 23
2.6.2 FrontBase ... 24
2.6.3 FBReplicator.. 24

3 Installation 25
3.1 Downloading FrontBase .. 25
3.2 FrontBase Directory Structure... 26

3.2.1 Directory Location... 26
3.2.2 Directory Contents... 26

3.3 FrontBase Components.. 29
3.3.1 FrontBase Servers.. 29
3.3.2 FrontBase Applications ... 29
3.3.3 FrontBase Tools... 29
3.3.4 Client Libraries .. 30

3.4 Platforms .. 31
3.4.1 Mac OS X and Mac OS X Server 10.x ... 31
3.4.2 Windows 2000 / NT / XP.. 34
3.4.3 RedHat Linux (x86)... 37
3.4.4 SuSE Linux (x86) .. 40
3.4.5 YellowDog Linux (PPC) ... 43
3.4.6 Debian Linux (x86) ... 46
3.4.7 Mandrake Linux (x86)... 49
3.4.8 Solaris... 52
3.4.9 FreeBSD (x86)... 55

3.5 FrontBase Licenses.. 58
3.5.1 Obtaining a License... 58
3.5.2 Installing a License.. 58

3.6 Keeping Current... 59
3.6.1 Determining the Latest Version .. 59
3.6.2 Determining your Current Version ... 59
3.6.3 Upgrading your FrontBase Server .. 60

4 Basic Concepts 61
4.1 SQL 92 Concepts ... 61

4.1.1 CATALOGs... 61
4.1.2 SCHEMAs ... 62
4.1.3 USERs.. 63
4.1.4 DATE, TIME and TIMESTAMP ... 64
4.1.5 Keywords and Identifiers .. 65
4.1.6 Learning More About SQL 92 .. 65

4.2 Understanding Transactions .. 66

Users Guide FB-5

4.2.1 Simultaneous Access ... 66
4.2.2 Transactions ... 66
4.2.3 Updateability.. 66
4.2.4 Isolation level... 66
4.2.5 Locking Discipline .. 68
4.2.6 Locking and Enterprise Objects Framework .. 68

5 Administration 69
5.1 Administration Tools ... 70

5.1.1 FrontBaseManager... 70
5.1.2 FrontBaseJManager ... 70
5.1.3 sql92 ... 70
5.1.4 FBScriptAgent ... 70

5.2 Transaction Logging.. 71
5.2.1 Implementation .. 71
5.2.2 Administration ... 72
5.2.3 SQL syntax .. 73
5.2.4 sql92 Command... 73
5.2.5 FrontBase Options ... 74
5.2.6 FBTLogs .. 74
5.2.7 FBTLog.. 75

5.3 Replication ... 76
5.3.1 Replication Master... 76
5.3.2 Replicator Daemon.. 76
5.3.3 Replication Clients .. 77
5.3.4 Replication and Passwords.. 78
5.3.5 Replication and Encryption... 78
5.3.6 Database Identification Checks... 78
5.3.7 Replicating a Database .. 78

5.4 Clustering ... 80
5.4.1 Background.. 80
5.4.2 Two-Phase Commit ... 80
5.4.3 Provisions for Absent Servers... 81
5.4.4 Clustering and Passwords.. 82
5.4.5 Clustering and Encryption... 83
5.4.6 Database Identification Checks... 83
5.4.7 Clustering a Database .. 83

5.5 Backup and Restore ... 85
5.5.1 Overview.. 85
5.5.2 Copy the Database Files .. 85
5.5.3 Backup of a Live Database.. 86
5.5.4 Restoring a Database ... 86
5.5.5 Export into Flat-Files... 87

FB-6 Users Guide

5.5.6 Replication ... 87
5.6 Enhanced Flat-File Import and Export Functions .. 88

5.6.1 Enhanced Flat-File Export Function... 88
5.6.2 Enhanced Flat-File Import Filter... 88
5.6.3 Example Import ... 92
5.6.4 Bulk Imports .. 93

5.7 Index Management .. 94
5.7.1 Indexing ... 94
5.7.2 Strategies.. 94
5.7.3 Index Tuning.. 96

5.8 SQL 99 Triggers .. 96
5.9 Storage Management ... 97

5.9.1 Device Management.. 98
5.9.2 Partition Management ... 99
5.9.3 Disk Zone Management .. 100
5.9.4 Table Storage Component Management... 101

5.10 Tuning FrontBase .. 101
5.10.1 Database Server Performance ... 102
5.10.2 FrontBase's Caching Mechanisms .. 102
5.10.3 When should Caching be Tuned? ... 103
5.10.4 The Descriptor Cache .. 103
5.10.5 Table Caching.. 104
5.10.6 Raw Device Driver (RDD).. 111
5.10.7 Improving Performance... 112
5.10.8 Mac OS X and Raw Devices... 113
5.10.9 Memory Usage... 114
5.10.10 Database Optimization .. 114

5.11 Migration.. 116
5.11.1 FileMaker... 116
5.11.2 MySQL .. 117

5.12 Troubleshooting ... 118
5.12.1 Logging SQL Statements .. 118
5.12.2 Understanding the SQL Log File .. 119
5.12.3 Location of the SQL Log File ... 120
5.12.4 New SQL Log File .. 120

6 FrontBaseManager 123
6.1 Monitoring and Managing Databases ... 124

6.1.1 Creating Databases .. 124
6.1.2 Restoring from Backup.. 126
6.1.3 Monitoring ... 127
6.1.4 Starting Databases ... 128
6.1.5 Stopping Databases.. 130

Users Guide FB-7

6.1.6 Showing Database Start Options... 130
6.1.7 Replication Management... 130
6.1.8 Cluster Management.. 133
6.1.9 Connecting to the Database... 136

6.2 Connection Window .. 138
6.2.1 SQL Interpreter.. 138
6.2.2 Database... 140
6.2.3 Session ... 141
6.2.4 Usage.. 142
6.2.5 License ... 143
6.2.6 User .. 145
6.2.7 Schema... 146
6.2.8 Schema Objects ... 147
6.2.9 New Schema Object .. 147
6.2.10 Open Schema Object Content ... 151
6.2.11 Inserting and Updating Rows.. 151
6.2.12 BLOB and CLOB handling... 152
6.2.13 Open Schema Object Definition ... 153
6.2.14 Table Cache ... 165
6.2.15 Black & White List.. 167
6.2.16 Backup ... 169

6.3 Odds-n-Ends... 169
6.3.1 Preferences... 170
6.3.2 File Import ... 171
6.3.3 SQL Log... 175

6.4 Known Issues ... 176
6.4.1 Removing Unreachable Remote Databases.. 176

7 sql92 177
7.1 Getting Started ... 177
7.2 Command Syntax... 178

7.2.1 Options... 178
7.3 sql92 Input.. 179
7.4 Command Line Editing ... 179
7.5 Commands ... 181

7.5.1 sql92 Specific Command Summary (Alphabetical) ... 181
7.5.2 Database Commands ... 182
7.5.3 Connection Commands ... 184
7.5.4 Password Commands... 185
7.5.5 Default Database Commands.. 185
7.5.6 Replicator Commands ... 186
7.5.7 Clustering Commands ... 187
7.5.8 Autostart Commands ... 189

FB-8 Users Guide

7.5.9 Show Commands... 191
7.5.10 Agent Commands .. 193
7.5.11 Set Commands ... 194
7.5.12 Timing Commands .. 195
7.5.13 Other Commands... 196

8 FrontBase for the Developer 197
8.1 FBExec Invocation .. 197

8.1.1 Files .. 198
8.1.2 Options... 198

8.2 FrontBase Invocation... 198
8.2.1 Files .. 199
8.2.2 Options... 199

8.3 FBReplicator Invocation.. 208
8.3.1 Files .. 208
8.3.2 Options... 208

8.4 FrontBase and Security.. 209
8.4.1 Password Protection .. 209
8.4.2 Encryption.. 210
8.4.3 Tools and Options.. 210
8.4.4 IP Address Checks... 211

8.5 Data Types ... 213
8.5.1 TINYINT ... 213
8.5.2 SMALLINT ... 214
8.5.3 INTEGER, INT.. 214
8.5.4 LONGINT.. 214
8.5.5 DECIMAL[(<precision> [, <scale>])] ... 214
8.5.6 NUMERIC[(<precision> [, <scale>])] ... 214
8.5.7 FLOAT[(<precision>)].. 215
8.5.8 REAL ... 215
8.5.9 DOUBLE PRECISION ... 215
8.5.10 CHARACTER, CHAR.. 215
8.5.11 NATIONAL CHARACTER, NATIONAL CHAR, NCHAR........................... 216
8.5.12 CHARACTER VARYING, CHAR VARYING, VARCHAR.......................... 216
8.5.13 NATIONAL CHARACTER VARYING, NATIONAL CHAR VARYING,

NCHAR VARYING.. 216
8.5.14 BIT ... 216
8.5.15 BIT VARYING ... 217
8.5.16 BYTE ... 217
8.5.17 DATE... 217
8.5.18 TIME.. 217
8.5.19 TIME WITH TIME ZONE ... 217
8.5.20 TIMESTAMP .. 218

Users Guide FB-9

8.5.21 TIMESTAMP WITH TIME ZONE.. 218
8.5.22 INTERVAL ... 218
8.5.23 BLOB... 219
8.5.24 CLOB... 219
8.5.25 BOOLEAN .. 219

8.6 Mapping of Foundation/Java objects into FrontBase Data Types 220
8.6.1 String.. 220
8.6.2 Integer Numbers .. 220
8.6.3 Decimal Numbers .. 221
8.6.4 Dates... 221
8.6.5 Time ... 221
8.6.6 Stream Data.. 222
8.6.7 Primary Key... 222

8.7 Primary Keys and Auto Generation .. 223
8.7.1 Generation of Keys.. 223

8.8 Row Level Privileges... 224
8.8.1 Defining ... 224
8.8.2 Deploying... 224

8.9 What Collations can do for You.. 225
8.9.1 International Characters .. 226
8.9.2 Case Insensitive Compare Operations .. 226

8.10 Embedding FrontBase into your own Application or Solution.. 229
8.10.1 Directory Structure .. 229
8.10.2 Starting the FrontBase Server - Windows NT/2000/XP 231
8.10.3 Starting the FrontBase Server – non-Windows Platforms 232

FB-11 Users Guide

1 Foreword
FrontBase is a scalable relational database server. A few general concepts will help explain what that
means.

1.1 Architecture

1.1.1 Client/server Architectures
These terms should be familiar to anyone who has used the World Wide Web. With the web, your browser
(the client) makes a request for a page from some web site (the server). The web site processes the request
and delivers a result (the web page). The FrontBase server is similar in some ways to a web server. It
listens for requests from FrontBase clients, processes requests, and returns results.

1.1.2 Relational Database Server
However, FrontBase is a relational database server. While a web server typically serves web pages for
display in a browser, FrontBase handles requests to store and retrieve data. By implementing the
"relational" model, FrontBase stores data in application-defined tables, among which application-defined
relations may exist. Tables are defined by their columns. For example, a phone book table might have the
following columns: name, phone number. The actual data is entered in rows of a table. A row in the phone
book table might have "John Doe" in the name column and "555-1212" in the phone number column.

1.1.3 Highly Scalable
FrontBase is highly scalable, which means it can handle very large data sets and high request loads. The
size of a data set is typically described by the number of rows in a table. Using its column indexing
features, FrontBase can efficiently insert and lookup data in tables with millions of rows. In applications
with high request loads, FrontBase's replication and clustering features can be exploited to run the same
database on multiple servers.

1.1.4 SQL 92 Query Language
FrontBase implements the industry-standard SQL 92 query language. FrontBase clients use this language
to store and retrieve data on the server. They also use the language to manage users, tune performance,
and do other administrative tasks. FrontBase implements the SQL 92 standard quite strictly, but also has
extensions to handle FrontBase-specific issues. FrontBase uses other standards, such as TCP/IP for
client/server communication and Unicode for character value storage.

Foreword
Architecture

FB-12 Users Guide

1.1.5 Inherent Interfaces
With its features, scalability, and adherence to standards, FrontBase is the ideal database for today's
custom client/server applications and for building dynamic web sites. Application developers can use
FrontBase's FBCAccess C library, JDBC, ODBC, Tcl drivers, and other interfaces to develop custom
applications. They can use FrontBase's array of adaptors to develop dynamic websites. Currently there are
adaptors for PHP, Perl, and WebObjects/EOF, a REALBasic plug-in and an Omnis Studio DAM.

FB-13 Users Guide

2 Introduction
FrontBase is a high performance relational database engine conforming to the standards and demands of
today's quality minded developers and users.

This chapter contains the following sections:

• Overview on page 13
• Standards Compliance on page 14
• Key Features on page 16
• Drivers, Adaptors and Plug-ins on page 19
• Migration on page 23
• FrontBase-Related Processes on page 23

2.1 Overview
The engine is written in pure ANSI C and benefits from 15+ years of experience with compiler and run-
time systems, embedded systems, object-oriented programming, database systems, and command-and-
control systems.

The topics in this section are:

• Supported Platforms on page 13
• Designed with Forethought on page 13
• Solid Foundation on page 14

2.1.1 Supported Platforms
• Mac OS X
• Windows
• Linux
• Unix

2.1.2 Designed with Forethought
FrontBase provides high performance and conformance to both international and de facto standards such
as:

Introduction
Standards Compliance

FB-14 Users Guide

SQL 92: FrontBase is the first industrial strength database engine in compliance with this
important international standard. This includes full integrity constraint checking built
right into the engine.

Unicode: FrontBase uses Unicode 2.0 exclusively for handling all CHARACTER data, while
conserving space by using the UTF-8 standard for representation. This provides easy
support for mixed client environments and their varying character sets.

Communication: FrontBase uses sockets for communicating with clients, making it easy for developers
to support a wide variety of client platforms.

Administration: FrontBase databases can be administrated from any computer on the Internet – no
particular precautions are needed.

2.1.3 Solid Foundation
The underlying truly relational oriented engine provides a solid foundation for dealing with databases very
efficiently and without limitations:

• Stringent transaction control
• 100% resiliency against crashes
• Super-fast start-up times
• Terabyte size databases
• Gigabyte size CHARACTER / VARCHAR strings and BLOBs
• Multi-column optimized B-tree indexing with very low overhead
• Host OS file system independency
• In-memory caching of tables
• Serializable isolation level with versioned reads
• Row-level locking facilities
• Read-only databases

2.2 Standards Compliance
This section describes international standards to which FrontBase adheres. These include SQL 92,
Unicode, TCP/IP, and ANSI C.

FrontBase adheres to several international standards, ensuring that you can leverage these standards when
developing and deploying your application with FrontBase.

This section discusses the following:

• Full SQL 92 Compliance on page 15

Introduction
Standards Compliance

Users Guide FB-15

• Unicode Character Representation on page 15
• TCP/IP Client/Server Interaction on page 15
• ANSI C Codebase on page 16

2.2.1 Full SQL 92 Compliance
FrontBase implements the full SQL 92 standard. Great care has been taken to implement all features
defined by the standard and implement them as defined by the standard. This document provides several
tutorial examples of using SQL 92 with FrontBase but for a comprehensive listing please see our SQL
reference document. The ultimate guide to SQL 92 is the standard itself. You can obtain the standard
“SQL 92 Standard at ANSI” from ANSI for a fee at:

http://webstore.ansi.org/

An excellent book by renowned database experts C. J. Date and Hugh Darwen is “A Guide to SQL
Standard (4th Edition)”.

http://www.amazon.com/exec/obidos/ASIN/0201964260/002-2828760-6502439

While it offers an academic approach, it is a very amusing book. Date and Darwen are not fans of many of
the decisions that resulted in the final SQL 92 standard.

2.2.2 Unicode Character Representation
FrontBase stores all character data (including CLOBs) using Unicode. Combined with FrontBase's support
for COLLATIONs, this ensures that server-side string comparisons work with character sets other than
standard ASCII.

FrontBase's support for Unicode works seamlessly across client platforms. Character data is converted to
Unicode on the client side, using the client operating system's native Unicode library. Character data in
Unicode format is then passed to the FrontBase server, where it is stored. When a client extracts character
data from the server, the client then converts from Unicode format to a format suitable for use on the client
platform.

2.2.3 TCP/IP Client/Server Interaction
FrontBase clients and servers use the standard TCP/IP Internet protocol to communicate. This allows
tremendous flexibility in how you design and deploy systems that incorporate FrontBase servers. For
example, in a WebObjects deployment, you may connect several application servers to a cluster of
FrontBase servers in a server area network (SAN). Or, if you don't require such performance and/or
redundancy, you can run WebObjects, Apache, and FrontBase on a single FrontBase server.

Introduction
Key Features

FB-16 Users Guide

2.2.4 ANSI C Codebase
FrontBase is written in ANSI C. This ensures a stable cross-platform codebase and allows us to move
FrontBase to new UNIX-based platforms with minimal effort. This offers FrontBase customers flexibility
in development and deployment platforms.

The FBCAccess client library is also written in ANSI C. Source code for FBCAccess is available by
special request, so if you need to deploy FrontBase clients on platforms (such as PalmOS or PocketPC)
where FrontBase servers have not been ported, you can.

2.3 Key Features
This section introduces the key features of FrontBase that make it the ideal database for Internet
applications. FrontBase supports most of the important features of "the big boys" and is more standards-
compliant than free and open source solutions.

This section discusses the following:

• Terabyte Databases, Gigabyte Column Values
• FrontBase Security
• Transactions
• Row Level Privileges
• Live Backup
• Caching
• Multi-Server Deployment

2.3.1 Petabyte Databases, Gigabyte Column Values
FrontBase supports petabyte-sized databases, gigabyte-sized character column values, and gigabyte-sized
Binary Large OBjects (BLOBs) and Character Large OBjects (CLOBs).

FrontBase implements its own file system within the files used to store the database. The file system in
FrontBase consists of partitions of up to 2^40 512-byte blocks, yielding one half petabyte of usable space
per partition. FrontBase 4.x uses a block-size of 512 bytes for low-level disk access. Partitions may reside
in distinct physical devices, enabling FrontBase to use 64 bit addressing capabilities resulting in low level
disk access to handle up to exa-byte databases spread over several physical devices. As character column
values, BLOB, or CLOB can occupy up to 2^32 bytes. In practice, large objects will be much smaller so
that one does not consume the entire addressable space for the database. Thus, we advertise gigabyte-sized
column values.

Introduction
Key Features

Users Guide FB-17

On (the few and rare)platforms where the logical file size cannot exceed the gigabyte range, FrontBase
will, when necessary, break its storage for a database into several files that fit within the file system's
limits. Since FrontBase maintains its own file system within these files, this partitioning does not impose
any limits on sizes of character column values, BLOBs, or CLOBS.

2.3.2 FrontBase Security
FrontBase uses passwords, encryption, and client IP address checks for security.

2.3.2.1 Passwords
FrontBase provides two layers of passwords for protecting access to databases: database passwords and
user passwords.

Database password If the database password is set, a client must send the database password
to the server as part of the connection protocol. If the server cannot
verify the password, the client connection is closed immediately.

User password Each database user can have a password. The server verifies the
password when a session is created for that user. If the verification fails,
the session is not created. When a session is successfully created, the
protection defined by the SQL 92 standard takes over.

Password handling in general Passwords may be of any length. Passwords are never exposed outside
the client software and they are not even in the database. As soon as an
application sends a password to the FrontBase client library, a one-way
function is applied to generate a password digest. The function will
throw away parts of the password so that it is impossible to deduce the
password from the digest. The user name is part of the digest so two
users with the same password will not have the same digest. The
password digest is transmitted to the server and used for verification in
place of the password.

FrontBase furthermore offers password authorization of overall database administration: The so-called
Server Authentication feature may be enabled, which means that password authorization is needed in order
to perform operations such as database creation and deletion as well as starting and stopping database
servers.

2.3.2.2 Encryption
Encryption is used to protect communication channels and data storage. When you create a FrontBase
database, you may optionally specify that data stored on the disk should be encrypted. You may also
specify that communication channels between the server and its clients must be secure.

Introduction
Key Features

FB-18 Users Guide

Data Encryption Data stored on the disk is encrypted using a triple DES in cipher block
chaining mode on 512 byte blocks. The data store itself is block-oriented
with 512 bytes per block so this effectively encrypts all data, including
table definitions, table contents, character data, and BLOBs. The
initialization vector depends on the logical position of the block within
the system, thus blocks with the same contents will never generate the
same cipher text blocks. The key used for encryption of data is a 64-bit
initialization vector, and 3x56 bits for the DES encryption.

Communication Encryption A client and the server are able to establish a secure channel. When a
client connects to the server, it receives a public RSA key from the
server. The client then generates a set of random session keys: one for
outgoing data and one for incoming data. It encrypts those session keys
with the public RSA key and sends the results to the server. The server
decrypts the session keys sent by the client using its private key. Thus,
the client and the server have established a common set of secret keys.

The algorithm used for encryption of communication data is a triple DES in byte stream mode with cipher
text and clear text feed back. The clear text feedback ensures that an error will propagate to all bytes
following the error. This ensures simple detection of errors and introduces only a small amount of
redundancy.

2.3.2.3 IP Address Checks
FrontBase implements black and white lists (also known as the "whiskey list") for determining which
clients may connect.

When a client connects to the FrontBase server, the IP address of the client is checked against a black and
white list. If the IP address is on the black list, the connection is refused. If the IP address is on the white
list, the connection is accepted.

If an IP address is on the white list, you can specify if a secure communication channel is required for that
address. In most cases, it will be ok to allow local connections to run without encryption.

FrontBase can also run in a mode where it accepts only local connections. This may be useful when
backing up a WebObjects or PHP powered web server, as it ensures that outsiders cannot connect directly
to the database.

2.3.3 Transactions
Transaction Logging on page 71 describes FrontBase's transaction support.

Introduction
Drivers, Adaptors and Plug-ins

Users Guide FB-19

2.3.4 Row Level Privileges
FrontBase offers a unique feature called Row Level Privileges (see page 224), which allows you to specify
access privileges for individual rows. Each row is said to be owned by a specific user and belonging to a
specific group. Access privileges (SELECT, UPDATE, and DELETE) for a row can be specified for the
owner, the group, and the world.

2.3.5 Live Backup
Backup and Restore on page 85 describes FrontBase's versioning system which allows it to perform
backups of live databases (i.e. while clients continue to access and modify the database).

2.3.6 Caching
Tuning FrontBase on page 96 describes FrontBase's caching schemes.

2.3.7 Multi-Server Deployment
Replication on page 76 describes FrontBase's replication features and Clustering on page 80 the features
for multi-server deployment for both redundancy and enhanced performance.

2.4 Drivers, Adaptors and Plug-ins
The following is a brief overview of the drivers and adaptors that make FrontBase an extremely flexible
database for application development. All of the following are available to download from our Download
section at http://www.frontbase.com/ along with associated documentation.

2.4.1 ODBC
The ODBC driver is for use on Windows (NT/2000/XP/ME/98) and Mac (PowerPC/Intel) with any
ODBC compliant application. Details about establishing a connection with each driver can be found in the
Readme files supplied with the drivers.

For the driver to correctly query the columns in a database schema using the SQLColumns ODBC API
call it must create a VIEW called VIEW_NEEDED_BY_FBODBC. This is automatically attempted when
a connection on that schema first issues the SQLColumns call.

However, in some circumstances when using an ODBC application an error may be returned specifying
that the view could not be found. Typically, this occurs because the user of the connection is not the owner
of the schema and will not have permission to create the view. It will also fail to be created if the
connection has been placed in a read-only transaction mode.

Introduction
Drivers, Adaptors and Plug-ins

FB-20 Users Guide

If this error occurs then first make sure the view exists. To do this through the driver, connect as the owner
of the schema and query the columns in a table, e.g. (using the MSQuery wizard). Make sure that the
connection's transaction mode allows writes to the database.

Alternatively, you can manually create the VIEW (from FBManager/FBJManager) by issuing the
following,

CREATE VIEW VIEW_NEEDED_BY_FBODBC AS SELECT COLUMN_PK, TABLE_PK,
"COLUMN_NAME", IS_NULLABLE, ORDINAL_POSITION, COLUMN_DEFAULT FROM
DEFINITION_SCHEMA.COLUMNS;

GRANT SELECT ON VIEW_NEEDED_BY_FBODBC TO "_PUBLIC";

This only needs to be done once for each schema and then any user can connect and query the columns.

2.4.2 JDBC
The JDBC driver provides general connectivity to FrontBase from applications such as Java programs.

The URL syntax is as follows:

jdbc:FrontBase://<host info> [<arg list>]

<host info> ::= <regular> | <cluster list
<arg list> ::= <user> | <user password> |
 <database password> | <session> |
 <system> | <isolation level> |
 <locking discipline> | <access mode>

<regular> ::= host_name <database info>
<cluster list> ::= <cluster member> {/<cluster member>}

<database info> ::= /database_name | :port

<cluster member> ::= database_name@host_name

<user> ::= /user=user_name
<user password> ::= /upasswd=user_password
<database password> ::= /dbpasswd=database_password
<session> ::= /session=session_id
<system> ::= /system=system_user
<isolation level> ::= /isolation=<isolation value>

Introduction
Drivers, Adaptors and Plug-ins

Users Guide FB-21

<locking discipline> ::= /locking=<locking value>
<access mode> ::= /readOnly=<access value>

<isolation value> ::= read_uncommitted | read_committed |
 repeatable_read | serializable | versioned
<locking value> ::= pessimistic | deferred | optimistic
<access value> ::= true | false

Establishing a connection requires that the driver has been installed and that classpaths have been set up
correctly.

Example:

import java.sql.*;

public class Test {

 public static void main(String[] args) {

 // Register driver.
 try {
 Class.forName("com.frontbase.jdbc.FBJDriver");
 }
 catch (Exception e) {
 System.err.println("Unable to load driver");
 e.printStackTrace();
 }

 // The URL syntax is described above
 try {
 String url = "jdbc:FrontBase://hostName/databaseName";
 String user = "myusername";
 String password = "mypassword";

 Connection con = DriverManager.getConnection(url, user,
 password);

 Statement stmt = con.createStatement();

 someCode...

 stmt.close();
 con.close();

Introduction
Drivers, Adaptors and Plug-ins

FB-22 Users Guide

 }
 catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());
 ex.printStackTrace();
 }
 }
}

2.4.3 WebObjects 5 Plug-in
A WebObjects plug-in enables connection to FrontBase on any supported operating system. There are
separate plug-ins for Win32 and Mac OS X.

2.4.4 PHP3 and PHP4 Adaptors
The API for these adaptors is based on the respective adaptors for MYSQL. Where functions begin with
mysql_ in the MYSQL adaptors they begin with fbsql_ in the FrontBase adaptors. The most obvious
advantage of this similarity is that porting a PHP application to FrontBase is relatively simple. The PHP 4
driver supports php4.0.6 (release) and php4.0.7-dev (current dev version).

2.4.5 Perl Adaptor
The Perl adaptor is a Perl Database Interface (DBI). This abstraction layer should make porting Perl
applications to FrontBase from other databases fairly easy.

2.4.6 Omnis Studio DAM
A release DAM (Data Access Module) for Omnis Studio 3.x is available from our download page. This
DAM provides developers with a rich RAD environment for development with FrontBase. The DAM is
currently available for MacOS Classic (8/9) Mac OS X and Win32. Documentation is included in the
download package.

2.4.7 REALBasic
These plug-ins are for REALBasic 3.0 PPC running on MacOS Classic (8/9) and REALBasic 3.0 Carbon
running on Mac OS X.

2.4.8 Tcl Driver
FrontBase now supports development with Tool Command Language (Tcl), the simple, open source
scripting language available cross-platform.

Introduction
Migration

Users Guide FB-23

2.4.9 EOF Adaptor
The EOF adaptor allows FrontBase to work with Apple's WebObjects 4.5.

2.5 Migration
FrontBase has tools for importing databases from FileMaker and MySQL.

2.5.1 FileMaker
The FileMaker migration (see page 116) is a two-step process. The tables of a FileMaker database are
exported from FileMaker. The exported files are moved to Mac OS X, where an application imports them
into FrontBase.

2.5.2 MySQL
The MySQL migration tool (see page 117) uses JDBC to extract table data from a MySQL database and
import it into a FrontBase database.

Other import mechanisms are available via the enhanced import facility: Enhanced Flat-File Import and
Export Functions on page 88.

2.6 FrontBase-Related Processes
There are two main processes that run in a FrontBase installation: FBExec and FrontBase. In case of
replicated configurations, the FBReplicator is the third major active FrontBase process. This section
briefly identifies these processes.

2.6.1 FBExec
FBExec acts as a broker between FrontBase databases running on your computer and client software
running on your computer or over the network. FBExec knows about database names and how to establish
connections to their FrontBase Servers.

When you install FrontBase, your computer will be set up so that FBExec is launched at start-up. A
detailed description of the FBExec process and how to start it is found in FBExec Invocation om page 197.

Introduction
FrontBase-Related Processes

FB-24 Users Guide

2.6.2 FrontBase
One instance of FrontBase will be running for each database that is hosted on your computer. Each
FrontBase instance is started directly from the command-line (UNIX installations), by the Service
Manager (Windows NT), or by using the FrontBaseManager or the sql92 tool.

A detailed description of a FrontBase Server and how to start it is found FrontBase Invocation on page
199.

2.6.3 FBReplicator
When FrontBase is configured for a replicated setup, the FBReplicator serves as the connection between
the replication master and the replication clients. The FBReplicator simply reads the Transaction Log
produced by the replication master and distributes the SQL statements written here to (all of) the
replication clients.

A detailed description of the FBReplicator process and how to start it is found in FBReplicator Invocation
on page 208.

FB-25 Users Guide

3 Installation
We offer a different installation of FrontBase for each supported server platform. Each installation
contains the FrontBase server as well as the server administration tools and client libraries available for
the platform. This chapter contains the following sections:

• Downloading FrontBase on page 25
• FrontBase Directory Structure on page 26
• Platforms on page 28
• FrontBase Licenses on page 58
• Keeping Current on page 59

3.1 Downloading FrontBase
To download FrontBase, please visit the Download section of http://www.frontbase.com. The size of the
archive is less than 10 MB and should require only a few minutes to download.

The following platforms are supported:

• Mac OS X
• Windows
• Linux
• Unix

Installation
FrontBase Directory Structure

FB-26 Users Guide

3.2 FrontBase Directory Structure
The FrontBase installation directory (the FrontBase home directory) contains all the files required for your
FrontBase installation. The files and subdirectories of the FrontBase home directory are explained in this
section.

3.2.1 Directory Location
The default location of the FrontBase installation depends on the platform on which you install FrontBase.

Platform Path

Mac OS X /Library/FrontBase

Windows <drive>:/usr/FrontBase

RedHat Linux (x86) /usr/local/FrontBase

SuSE Linux (x86) /opt/FrontBase

YellowDog Linux (PPC) /opt/FrontBase

Debian Linux (x86) /usr/lib/FrontBase

Mandrake Linux (x86) /usr/lib/FrontBase

Solaris /opt/FrontBase

FreeBSD (x86) /usr/local/FrontBase

The FrontBase installers by default installs FrontBase in the platform-specific default locations described
above, but you may actually install FrontBase anywhere in your file system. Currently, the FrontBase
directory needs to be owned by "root" or "administrator", but that mostly artificial requirement should also
disappear in a future version.

3.2.2 Directory Contents
The structure of the FrontBase home directory is independent of the platform on which it is installed, and
it normally contains the following subdirectories and files:

Backups The Backups directory contains backup directories, one for each database

Installation
FrontBase Directory Structure

Users Guide FB-27

Collations The Collations directory holds all defined collations (orderings of Unicode
characters which can be instantiated as COLLATIONs in your SCHEMAs).

Databases The Databases directory holds all databases served from the host. For each
database there are three or more files: <database-name>.fb, which contains (some
of) the actual database data, <database-name>.fb.log containing miscellaneous
status and error messages and <database-name>.fb.pid containing the Process ID
of the current (or latest) database server. If the database is a member of a cluster,
the cluster composition is described in <database-name>.cluster. If SQL logging
is enabled for a database, it is written to the file <database-name>.fb.sql. You can
delete a database by deleting the <database-name>.fb file. Of course, you can also
log into the database as _SYSTEM and issue a DELETE DATABASE command.
Alternatively you could use one of the database managers to delete your
databases. On Windows NT, you should make sure that you've removed the
database as a service before deleting it.

Documentation The Documentation directory (if present) contains an SQL example, the
FrontBase license agreement, the platform specific Readme file and the Release
Note for the present FrontBase installation.

FBExec.autostart FBExec.autostart specifies which databases the FBExec should start on its own
start-up, if any

FBExec.log FBExec.log is a file to which the FBExec process appends miscellaneous status
and error messages, when enabled

FBExec.passwd FBExec.passwd contains a digested form of the password used by the Server
Authentication feature of FrontBase, when enabled.

Java The Java directory (if present) contains miscellaneous FrontBase related Java
code, for example the JDBC driver for FrontBase

Library The Library directory contains miscellaneous files required to create a new
database.

LicenseString The LicenseString file contains the license string for FrontBase on this machine.
FrontBase licenses are free and may be obtained from the Buy section of
http://www.frontbase.com.

TransactionLogs The TransactionLogs directory contains transaction logs in separate sub-
directories, one for each database.

Translations The Translations directory holds all defined translations.

Installation
FrontBase Directory Structure

FB-28 Users Guide

bin The bin directory contains the FrontBase executables. You may want to add the
<FB home>/FrontBase/bin directory to your $PATH environment variable for
easy access with command-line tools. All examples in this document assume that
you have done so.

include The include directory contains header files used for development.

lib The lib directory contains FrontBase libraries used for development.

Installation
FrontBase Components

Users Guide FB-29

3.3 FrontBase Components
A FrontBase installation consists of a number of executables (servers, applications and tools), and may be
supplemented by a number of Client Libraries.

3.3.1 FrontBase Servers
These are part of any FrontBase installation and are found in the bin directory of the FrontBase home
directory:

FBExec The FBExec is a service background process that is typically started automatically
when the computer is restarted. The FBExec provides status, management and
access information to all client applications concerning all databases on its host
machine.

FrontBase FrontBase is the actual database server. There is a FrontBase process running for
each running database. A FrontBase process is typically started by various
management applications, but can also be started from the command line.

FBReplicator The replication daemon distributing transactions from a replication master to its
replication clients.

3.3.2 FrontBase Applications
The FrontBaseManager is relevant only for the Mac OS X platform and the FrontBaseJManager is
relevant for any platform on which Java is installed. The FrontBaseJManager is found in the Java
directory of the FrontBase home directory (or may be downloaded separately from the FrontBase
website):

FrontBaseManager A Cocoa application for managing databases, database schemas and content. The
FrontBaseManager also contains an "sql92" functionality; i.e. SQL statements can
be sent to a FrontBase database for execution. Please note that the
FrontBaseManager can manage databases on all hosts in a network with a
FrontBase installation.

FrontBaseJManager The Java equivalent of the FrontBaseManager. Relevant for all platforms on
which Java is installed.

3.3.3 FrontBase Tools
These are command line tools which are part of any FrontBase installation. They are found in the bin
directory of the FrontBase home directory:

Installation
FrontBase Components

FB-30 Users Guide

sql92 A command line tool for managing and accessing databases. sql92 will let you
create, start and stop databases, connect to databases, and execute SQL
statements.

FBInfoCenter A command line tool which prints out details about your FrontBase installation
and your machine.

FBRAccess A command line tool for inspecting and managing a replication setup.

FBTLogs A command line tool for summarizing the transaction log of a database.

FBTLog A command line tool for displaying (portions of) the transaction log of a database
in an ASCII form.

FBKeyGenerator A command line tool for generating encryption keys.

FBChangeKey A command line tool for changing the encryption of a database.

3.3.4 Client Libraries
Of the Client Libraries mentioned below, only FBCAccess is relevant for all platforms and is included in
the default FrontBase installation. The other libraries may be downloaded separately when and if they are
needed.

FBAccess A Cocoa framework providing the API that allows Cocoa applications to
administrate and connect to FrontBase databases.

FBCAccess A C library providing the API that allows client applications to administrate and
connect to FrontBase databases.

PHP3/4 The FrontBase driver for a PHP connection

Perl The FrontBase driver for a Perl connection

ODBC The FrontBase driver for an ODBC connection

JDBC 3 The FrontBase driver for a JDBC connection

EOF Adaptor A Cocoa framework providing the functionality required by the Enterprise
Objects Framework which is a part of WebObjects 4.5.1 from Apple Computer,
Inc.

Installation
Platforms

Users Guide FB-31

3.4 Platforms

3.4.1 Mac OS X and Mac OS X Server 10.x
The following Administrative Tools are provided:

• FrontBaseManager (see page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBAccess
• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3
• EOF Adaptor

3.4.1.1 Installation
Following the instructions below, you should be able to install FrontBase in a few minutes. After
installing FrontBase, you can read about your new FrontBase server. You may find it useful to print this
section before continuing.

1. Log in to your Mac OS X computer. FrontBase can be installed and run by any user.

2. If you have a previous version of FrontBase running on your server, the install script will stop all
FrontBase related processes automatically. Refer to “Administration Tools” on page 70 if you wish
to stop things manually.

If you are also running client software (such as WebObjects, PHP, etc.), you should disable it so it
does not access FrontBase during the upgrade process. Some client software may detect that
FrontBase is not running and attempt to restart it while you are upgrading! Your installation should
only be offline for a few minutes while you upgrade.

3. Once you have downloaded the .dmg file, locate the file according to the preferences of your
browser. The .dmg file is expanded with the disk utility to a .pkg file.

4. Select the .dmg file and double click. To install the .pkg, select the file and double click and the
installer will be launched ready to install FrontBase. The installer will provide you with further
instructions.

By default, the installer will install FrontBase into the /Library/FrontBase directory.

Installation
Platforms

FB-32 Users Guide

5. Verify that FrontBase has been successfully installed and started by entering the following in a
terminal window:

ps axc | grep FB

If the FBExec process (a key FrontBase component) is running, the system should reply with
something like:

374 ? S 0:00 FBExec

You can also check this process on Mac OS X by running the Activity Monitor.

If it is not running, try to launch it from the command-line:

/Library/FrontBase/bin/FBExec &

Please note that the FBExec is installed so that it will be automatically started when the computer is
restarted. The FBExec is also started as part of the installation process, so there is no need to restart
the computer after installation. If launching FBExec results in an error, please send e-mail to
support@frontbase.com. We will be happy to help you.

6. If you are upgrading from a previous version of FrontBase and have databases or client software
(e.g. WebObjects, PHP, etc.) running prior to starting your upgrade, you should restart those now.

First, start your databases as described in “Administration Tools” on page 70. Then restart your
client software.

7. Adjusting the search path (PATH) to include the /Library/FrontBase/bin directory will make your
life on the command-line simpler.

8. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer.

3.4.1.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

1. Log in as root or use the ‘sudo’ approach as any user.

Installation
Platforms

Users Guide FB-33

2. Stop all FrontBase processes and the FBExec process

3. Remove the FrontBase installation using the remove commands (or use the Finder):

rm -r /Applications/FrontBaseManager.app
rm -r /Applications/FBScriptAgent.app
rm -r /Applications/FBUnicodeManager.app

rm -r /Library/Frameworks/FBAccess.framework
rm -r /Library/Frameworks/FBCAccess.framework
rm -r /Library/Frameworks/FrontBaseEOAdaptor.framework

rm /Library/StartupItems/FrontBase*

rm -r /Library/FrontBase

NOTE: Please note that the last rm in step 3 will irreversibly remove all your databases.

Installation
Platforms

FB-34 Users Guide

3.4.2 Windows 2000 / NT / XP
The following Administrative Tools are provided:

• FBJManager (a Java variant of the FrontBaseManager described on page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBAccess
• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3
• EOF Adaptor

3.4.2.1 Installation
Following the instructions below, you should be able to install FrontBase in a few minutes. After
installing FrontBase, you can read about your new FrontBase server. You may find it useful to print this
section before continuing.

1. Log in to your Windows NT computer as "administrator". FrontBase currently needs to be installed
by administrator so that it can run like IIS and similar services. It makes no use of special ports nor
does other things that may cause security concerns.

2. Use your favorite zip file utility (such as PKZip) to unzip the downloaded archive. Unzipping will
yield two executable (.exe) files. Run each of them and follow the installation instructions provided.

FrontBase will be installed into the <drive>:/usr/FrontBase directory, where <drive>: is the drive
onto which you've installed FrontBase.

Windows NT specific components will be installed into the <drive>:/Program Files/FrontBase
Tools and <drive>:/Apple/Library/Frameworks directories.

3. By default, FrontBase expects to be installed on the C: drive. If you have installed it on another
drive (e.g. F:), you'll need to add a system environment variable to NT.

Go to Start>Settings>Control Panel, double-click the System icon, and add the FB_HOME_DRIVE
environment variable, setting it to the letter of the drive onto which you installed FrontBase (e.g.
F:).

Installation
Platforms

Users Guide FB-35

4. The installation process will automatically define FBExec as an NT service and start it. However,
should you ever need to perform this task manually for some reason it is relatively simple. For
example, to install and start FBExec you would need to define the FBExec as an NT service. Bring
up a shell (e.g. a Bourne or DOS shell) and enter the following command:

<drive>:/usr/FrontBase/bin/FBExec –install

Start the FBExec service using the Service Control Manager (Start>Settings>Control Panel, double-
click the Services icon). Using the service Control Manager, you can also specify that the FBExec
service should be started automatically whenever the computer is restarted.

You can verify that FBExec now is running by launching the "Windows NT Task Manager" (Ctrl-
Alt-Del, click on Task Manager).

5. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer. You should now spend some time reading the documentation that
accompanies your FrontBase server.

3.4.2.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

1. Log in as administrator

2. Stop the FBExec service using the ServiceControlManager application.

3. Remove the FBExec as a service:

<drive>:\usr\FrontBase\bin\FBExec -remove

4. Remove all FrontBase databases as services:

<drive>:\usr\FrontBase\bin\FrontBase -remove <database-name>

5. Repeat step 4 for each database that has been installed as a service (find the list of installed
databases using the ServiceControlManager application).

6. Remove the following folders (using e.g. the Windows NT Explorer):

Installation
Platforms

FB-36 Users Guide

<drive>:\Apple\Local\Library\Frameworks\FBAccess.framework
<drive>:\Apple\Local\Library\Frameworks\FrontbaseEOAdaptor.frame
work
<drive>:\Apple\Local\Library\Executables\FBAccess.dll

<drive>:\Apple\Local\Library\Executables\FrontbaseEOAdaptor.dll

<drive>:\Program Files\FrontBaseTools
<drive>:\usr\FrontBase

NOTE: Add/Remove programs contain entries to remove installed FrontBase components, Server,
FrameWorks and Tools. By removing the last folder in step 7, you irreversible remove all your
databases.

Installation
Platforms

Users Guide FB-37

3.4.3 RedHat Linux (x86)
The following Administrative Tools are provided:

• FBJManager (a Java variant of the FrontBaseManager described on page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3

3.4.3.1 Installation
Following the instructions below, you should be able to install FrontBase in a few minutes. After
installing FrontBase, you can read about your new FrontBase server. You may find it useful to print this
section before continuing.

NOTE: RedHat-based Linux installs simply with RPM.

1. Log in to your RedHat Linux computer as "root". FrontBase currently needs to be installed by root
so that it can run like Apache and other root level services. It makes no use of special ports nor does
other things that may cause security concerns.

2. If you have a previous version of FrontBase running on your server, the install script (which you'll
run in the next step) will stop all FrontBase related processes. You should usually let the script stop
these processes for you.

If you are also running client software (such as PHP), you should disable it so it does not access
FrontBase during the upgrade process. Some client software may detect that FrontBase is not
running and attempt to restart it while you are upgrading! Your installation should only be offline
for a few minutes while you upgrade.

3. From the terminal, expand FrontBase and run the installation script as follows (note that the actual
version number may be higher). If you are installing FrontBase for the first time:

rpm -i FrontBase-<version-number>.rpm

If you are updating FrontBase, use:

Installation
Platforms

FB-38 Users Guide

rpm -U FrontBase-<version-number>.rpm

Please note that in addition to -U, one could use --force as an option to force installation
disregarding any errors.

By default, the script will install FrontBase into the /usr/local/FrontBase/bin directory.

4. Verify that FrontBase has been successfully installed and started by entering the following in a
terminal window:

ps axc | grep FB

If the FBExec process (a key FrontBase component) is running, the system should reply with
something like:

374 ? S 0:00 FBExec

If it is not running, try to launch it from the command-line:

/usr/local/FrontBase/bin/FBExec &

If launching FBExec results in an error, please send e-mail to support@frontbase.com. We will be
happy to help you.

5. If you are upgrading from a previous version of FrontBase and had databases or client software (e.g.
PHP) running prior to starting your upgrade, you should restart those now.

First, start your databases as described in “Administration Tools” on page 70. Then restart your
client software.

6. Adjusting the search path (PATH) to include the /usr/local/FrontBase/bin directory will make your
life on the command-line simpler.

7. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer. You should now spend some time reading the documentation that
accompanies your FrontBase server.

Installation
Platforms

Users Guide FB-39

3.4.3.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

1. Login as root

2. Remove the FrontBase installation:

rpm -e FrontBase

3. Remove the remains of the installation directory:

rm -r <FB home>/FrontBase

Installation
Platforms

FB-40 Users Guide

3.4.4 SuSE Linux (x86)
The following Administrative Tools are provided:

• FBJManager (a Java variant of the FrontBaseManager described on page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3

3.4.4.1 Installation
Following the instructions below, you should be able to install FrontBase in a few minutes. After
installing FrontBase, you can read about your new FrontBase server. You may find it useful to print this
section before continuing.

NOTE: SuSE Linux installs simply with RPM.

1. Log in to your SuSE Linux computer as "root". FrontBase currently needs to be installed by root so
that it can run like Apache and other root level services. It makes no use of special ports nor does
other things that may cause security concerns.

2. If you have a previous version of FrontBase running on your server, the install script (which you'll
run in the next step) will stop all FrontBase related processes. You should usually let the script stop
these processes for you. Refer to Basic Administration if you wish to stop things manually.

If you are also running client software (such as PHP), you should disable it so it does not access
FrontBase during the upgrade process. Some client software may detect that FrontBase is not
running and attempt to restart it while you are upgrading! Your installation should only be offline
for a few minutes while you upgrade.

3. From the terminal, expand FrontBase and run the installation script as follows (note that the actual
version number may be higher). If you are installing FrontBase for the first time:

rpm -i FrontBase-<version-number>.rpm

If you are updating FrontBase, use:

Installation
Platforms

Users Guide FB-41

rpm -U FrontBase-<version-number>.rpm

Please note that in addition to -U, one could use --force as an option to force installation
disregarding any errors.

By default, the script will install FrontBase into the /opt/FrontBase directory.

4. Verify that FrontBase has been successfully installed and started by entering the following in a
terminal window:

ps axc | grep FB

If the FBExec process (a key FrontBase component) is running, the system should reply with
something like:

374 ? S 0:00 FBExec

If it is not running, try to launch it from the command-line:

/opt/FrontBase/bin/FBExec &

If launching FBExec results in an error, please send e-mail to support@frontbase.com. We will be
happy to help you.

5. If you are upgrading from a previous version of FrontBase and had databases or client software (e.g.
PHP) running prior to starting your upgrade, you should restart those now.

First, start your databases as described in “Administration Tools” on page 70. Then restart your
client software.

6. Adjusting the search path (PATH) to include the /opt/FrontBase/bin directory will make your life on
the command-line simpler.

7. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer. You should now spend some time reading the documentation that
accompanies your FrontBase server.

Installation
Platforms

FB-42 Users Guide

3.4.4.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

1. Login as root

2. Remove the FrontBase installation

rpm -e FrontBase

3. Remove the remains of the installation directory:

rm -r <FB home>/FrontBase

Installation
Platforms

Users Guide FB-43

3.4.5 YellowDog Linux (PPC)
The following Administrative Tools are provided:

• FBJManager (a Java variant of the FrontBaseManager described on page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3

3.4.5.1 Installation
Following the instructions below, you should be able to install FrontBase in a few minutes. After
installing FrontBase, you can read about your new FrontBase server. You may find it useful to print this
section before continuing.

NOTE: YellowDog Linux installs simply with RPM.

1. Log into your YellowDog Linux computer as "root". FrontBase currently needs to be installed by
root so that it can run like Apache and other root level services. It makes no use of special ports nor
does other things that may cause security concerns.

2. If you have a previous version of FrontBase running on your server, the install script (which you'll
run in the next step) will stop all FrontBase related processes. You should usually let the script stop
these processes for you. Refer to “Administration Tools” on page 70 if you wish to stop things
manually.

If you are also running client software (such as PHP), you should disable it so it does not access
FrontBase during the upgrade process. Some client software may detect that FrontBase is not
running and attempt to restart it while you are upgrading! Your installation should only be offline
for a few minutes while you upgrade.

3. From the terminal, expand FrontBase and run the installation script as follows (note that the actual
version number may be higher). If you are installing FrontBase for the first time:

rpm -i FrontBase-<version-number>.rpm

Installation
Platforms

FB-44 Users Guide

If you are updating FrontBase, use:

rpm -U FrontBase-<version-number>.rpm

Please note that in addition to -U, one could use --force as an option to force installation
disregarding any errors.

By default, the script will install FrontBase into the /opt/FrontBase directory.

4. Verify that FrontBase has been successfully installed and started by entering the following in a
terminal window:

ps axc | grep FB

f the FBExec process (a key FrontBase component) is running, the system should reply with
something like:

374 ? S 0:00 FBExec

If it is not running, try to launch it from the command-line:

/opt/FrontBase/bin/FBExec &

If launching FBExec results in an error, please send e-mail to support@frontbase.com. We will be
happy to help you.

5. If you are upgrading from a previous version of FrontBase and had databases or client software (e.g.
PHP) running prior to starting your upgrade, you should restart those now.

First, start your databases as described in “Administration Tools” on page 70. Then restart your
client software.

6. Adjusting the search path to include the /opt/FrontBase/bin directory will make your life on the
command-line simpler.

7. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer. You should spend some time reading the documentation that accompanies
your FrontBase server.

Installation
Platforms

Users Guide FB-45

3.4.5.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

1. Login as root

2. Remove the FrontBase installation

rpm -e FrontBase

3. Remove the remains of the installation directory:

rm -r /opt/FrontBase

NOTE: By removing the FrontBase directory, you irreversibly remove all your databases.

Installation
Platforms

FB-46 Users Guide

3.4.6 Debian Linux (x86)
The following Administrative Tools are provided:

• FBJManager (a Java variant of the FrontBaseManager described on page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3

3.4.6.1 Installation
Following the instructions below, you should be able to install FrontBase in a few minutes. After
installing FrontBase, you can read about your new FrontBase server. You may find it useful to print this
section before continuing.

NOTE: Debian Linux installs with a shell script.

1. Log into your Debian Linux computer as "root". FrontBase currently needs to be installed by root
so that it can run like Apache and other root level services. It makes no use of special ports nor does
other things that may cause security concerns.

2. If you have a previous version of FrontBase running on your server, the install script (which you'll
run in the next step) will ask whether you wish to stop FrontBase related processes. You should
usually let the script stop these processes for you. Refer to “Administration Tools” on page 70 if
you wish to stop things manually.

If you are also running client software (such as PHP) you should disable it so it does not access
FrontBase during the upgrade process. Some client software may detect that FrontBase is not
running and attempt to restart it while you are upgrading! Your installation should only be offline
for a few minutes while you upgrade.

3. Once you have downloaded the .deb file, install it as follows (terminal window, logged in as root):

dpkg -i FrontBase-3.3.deb

By default, the script will install FrontBase into the /usr/lib/FrontBase directory.

Installation
Platforms

Users Guide FB-47

4. Verify that FrontBase has been successfully installed and started by entering the following in a
terminal window:

ps axc | grep FB

If the FBExec process (a key FrontBase component) is running, the system should reply with
something like:

374 ? S 0:00 FBExec

If it is not running, try to launch it from the command-line:

/usr/lib/FrontBase/bin/FBExec &

Please note that the FBExec is installed so that it will be started automatically when the computer is
booted. The FBExec is also started as part of the installation process, i.e. there is no need to restart
the computer after installation.

If launching FBExec results in an error, please send e-mail to support@frontbase.com. We will be
happy to help you.

5. If you are upgrading from a previous version of FrontBase and had databases or client software (e.g.
PHP) running prior to starting your upgrade, you should restart those now.

First, start your databases as described in “Administration Tools” on page 70. Then restart your
client software.

6. Adjusting the search path (PATH) to include the /usr/lib/FrontBase/bin directory will make your
life on the command-line simpler.

7. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer. You should now spend some time reading the documentation that
accompanies your FrontBase server.

3.4.6.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

1. Login as root

Installation
Platforms

FB-48 Users Guide

2. Remove the FrontBase installation

dpkg -r frontbase

3. Remove the remains of the installation directory:

rm -r /usr/lib/FrontBase

NOTE: By removing the FrontBase directory, you irreversibly remove all your databases.

Installation
Platforms

Users Guide FB-49

3.4.7 Mandrake Linux (x86)
The following Administrative Tools are provided:

• FBJManager (a Java variant of the FrontBaseManager described on page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3

3.4.7.1 Installation
Following the instructions below, you should be able to install FrontBase in a few minutes. After
installing FrontBase, you can read about your new FrontBase server. You may find it useful to print this
section before continuing.

NOTE: Mandrake Linux installs simply with RPM.

1. Log into your Mandrake Linux computer as "root". FrontBase currently needs to be installed by
root so that it can run like Apache and other root level services. It makes no use of special ports nor
does other things that may cause security concerns.

2. If you have a previous version of FrontBase running on your server, the install script (which you'll
run in the next step) will stop all FrontBase related processes. You should usually let the script stop
these processes for you. Refer to Basic Administration if you wish to stop things manually.

If you are also running client software (such as PHP), you should disable it so it does not access
FrontBase during the upgrade process. Some client software may detect that FrontBase is not
running and attempt to restart it while you are upgrading! Your installation should only be offline
for a few minutes while you upgrade.

3. From the terminal, expand FrontBase and run the installation script as follows (note that the actual
version number may be higher). If you are installing FrontBase for the first time:

rpm -i FrontBase-<version-number>.rpm

If you are updating FrontBase, use:

Installation
Platforms

FB-50 Users Guide

rpm -U FrontBase-<version-number>.rpm

Please note that in addition to -U, one could use --force as an option to force installation
disregarding any errors.

By default, the script will install FrontBase into the /usr/local/FrontBase directory.

4. Verify that FrontBase has been successfully installed and started by entering the following in a
terminal window:

ps axc | grep FB

If the FBExec process (a key FrontBase component) is running, the system should reply with
something like:

374 ? S 0:00 FBExec

If one or both are not running, try to launch them from the command-line:

/usr/local/FrontBase/bin/FBExec &

If launching FBExec results in an error, please send e-mail to support@frontbase.com. We will be
happy to help you.

5. If you are upgrading from a previous version of FrontBase and had databases or client software (e.g.
PHP) running prior to starting your upgrade, you should restart those now.

First, start your databases as described in “Administration Tools” on page 70. Then restart your
client software.

6. Adjusting the search path to include the /usr/local/FrontBase/bin directory will make your life on
the command line simpler.

7. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer. You should spend some time reading the documentation that accompanies
your FrontBase server.

Installation
Platforms

Users Guide FB-51

3.4.7.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

1. Login as root

2. Remove the FrontBase installation

rpm -e FrontBase

3. Remove the remains of the installation directory:

rm -r /usr/local/FrontBase

NOTE: By removing the FrontBase directory, you irreversibly remove all your databases.

Installation
Platforms

FB-52 Users Guide

3.4.8 Solaris
The following Administrative Tools are provided:

• FBJManager (a Java variant of the FrontBaseManager described on page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3

3.4.8.1 Installation
Following the instructions below, you should be able to install FrontBase in a few minutes. After
installing FrontBase, you can read about your new FrontBase server. You may find it useful to print this
section before continuing.

NOTE: FrontBaseManager is not available on Solaris. FBAccess and EOF Adaptor on Solaris require
Apple's WebObjects to be installed. FrontBase for Solaris has been generated using SunOS 5.8. For
other versions, please contact us at info@frontbase.com.

1. Log in to your Solaris computer as "root". FrontBase currently needs to be installed by root so that
it can run like Apache and other root level services. It makes no use of special ports nor does other
things that may cause security concerns.

2. If you have a previous version of FrontBase running on your server, the install script (which you'll
run in the next step) will ask whether you wish to stop FrontBase related processes. You should
usually let the script stop these processes or you. Refer to “Administration Tools” on page 70 if you
wish to stop things manually.

If you are also running client software (such as PHP), you should disable it so it does not access
FrontBase during the upgrade process. Some client software may detect that FrontBase is not
running and attempt to restart it while you are upgrading! Your installation should only be offline
for a few minutes while you upgrade.

3. From the terminal, expand FrontBase and run the installation script as follows (note that the actual
version number may be higher):

Installation
Platforms

Users Guide FB-53

cd FrontBase-<version-number>
sh ./install.sh

4. By default, the script will install FrontBase into the /opt/FrontBase directory.

5. Verify that FrontBase has been successfully installed and started by entering the following in a
terminal window:

ps -e | grep FB

If the FBExec process (a key FrontBase component) is running, the system should reply with
something like:

374 ? S 0:00 FBExec

If it is not running, try to launch it from the command-line:

/opt/FrontBase/bin/FBExec &

If launching FBExec results in an error, please send e-mail to support@frontbase.com. We will be
happy to help you.

6. If you are upgrading from a previous version of FrontBase and had databases or client software (e.g.
PHP) running prior to starting your upgrade, you should restart those now.

First, start your databases as described in “Administration Tools” on page 70. Then restart your
client software.

7. Adjusting the search path (PATH) to include the /opt/FrontBase/bin directory will make your life on
the command-line simpler.

8. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer. You should now spend some time reading the documentation that
accompanies your FrontBase server.

3.4.8.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

Installation
Platforms

FB-54 Users Guide

1. Login as root

2. Change directory to the FrontBase installation directory.

cd /opt/FrontBase

3. Remove the FrontBase installation.

sh ./deinstall

4. Go to the parent directory and remove the remains of the installation directory:

cd ..
rm -r FrontBase

NOTE: By removing the FrontBase directory, you irreversibly remove all your databases.

Installation
Platforms

Users Guide FB-55

3.4.9 FreeBSD (x86)
The following Administrative Tools are provided:

• FBJManager (a Java variant of the FrontBaseManager described on page 123)
• sql92 (see page 177)

The following Client Libraries are available:

• FBCAccess
• PHP3/4
• Perl
• ODBC
• JDBC 3

3.4.9.1 Installation
Following the instructions below, you will be able to install FrontBase in a few minutes. After installing
FrontBase, you can read about your new FrontBase server. You may find it useful to print this section
before continuing.

NOTE: FreeBSD installs with shell script and requires some manual configuration.

1. Log in to your FreeBSD computer as "root". FrontBase currently needs to be installed by root so
that it can run like Apache and other root level services. It makes no use of special ports nor does
other things that may cause security concerns.

2. If you have a previous version of FrontBase running on your server, the install script (which you'll
run in the next step) will ask whether you wish to stop FrontBase related processes. You should
usually let the script stop these processes for you. Refer to “Administration Tools” on page 70 if
you wish to stop things manually.

If you are also running client software (such as PHP), you should disable it so it does not access
FrontBase during the upgrade process. Some client software may detect that FrontBase is not
running and attempt to restart it while you are upgrading! Your installation should only be offline
for a few minutes while you upgrade.

3. From the terminal, expand FrontBase and run the installation script as follows (note that the actual
version number may be higher):

tar xvf FrontBase-<version-number>.tar
cd FrontBase-<version-number>

Installation
Platforms

FB-56 Users Guide

sh install.sh

4. By default, the script will install FrontBase into the /usr/local/FrontBase directory.

5 Verify that FrontBase has been successfully installed and started by entering the following in a
terminal window:

ps axc | grep FB

If the FBExec process (a key FrontBase component) and the FBWebEnabler process (web
administration tool process) are running, the system should reply with something like:

374 ? S 0:00 FBExec
375 ? S 0:00 FBWebEnabler

6. If one or both are not running, try to launch them from the command-line:

cd /usr/local/FrontBase (default FrontBase directory)
./bin/FBExec &
./bin/FBWebEnabler &

If launching FBExec or FBWebEnabler results in an error, please send e-mail to
support@frontbase.com. We will be happy to help you.

7. If you are upgrading from a previous version of FrontBase and had databases or client software (e.g.
PHP) running prior to starting your upgrade, you should restart those now.

First, start your databases as described in “Administration Tools” on page 70. Then restart your
client software.

8. Adjusting the search path to include the /usr/local/FrontBase/bin directory will make your life on
the command-line simpler.

9. Congratulations, you have successfully downloaded and installed FrontBase! You do not need to
restart your computer. You should now spend some time reading the documentation that
accompanies your FrontBase server.

Installation
Platforms

Users Guide FB-57

3.4.9.2 Removing FrontBase
Should you ever need to completely remove FrontBase from your computer, this section describes how to
do that.

1. Login as root

2. Change directory to the FrontBase installation directory.

cd /opt/FrontBase

3. Remove the FrontBase installation.

sh ./deinstall

4. Go to the parent directory.

cd ..

5. Remove the remains of the installation directory:

rm -r FrontBase

NOTE: By removing the FrontBase directory, you irreversibly remove all your databases.

Installation
FrontBase Licenses

FB-58 Users Guide

3.5 FrontBase Licenses

3.5.1 Obtaining a License
FrontBase requires a valid license to run with full functionality enabled. FrontBase licenses are free of
charge and are obtained from the Buy section of the FrontBase Web site at: http://www.frontbase.com.

You obtain a license string from the website by registering the platform on which you wish FrontBase to
run and by supplying the IP or MAC (Ethernet) address of the server. A license string for your server will
be sent to you by e-mail.

There is only one license kind available, called E-Enterprise with LookSee, which enables the full, non-
expiring functionality of FrontBase.

3rd party companies (ISVs/OEMs) can incorporate FrontBase into their solution using an Embedded
license. Please contact FrontBase for further information. Technical details can be found in the section
“Embedding FrontBase into your own application or solution” on page 229.

3.5.2 Installing a License
There are two ways to install the license string:

1. If you are running FrontBase on a platform that includes the FrontBaseManager (Mac OS X) or the
FrontBaseJManager (all platforms with Java installed), you can install it from there. Choose
License management from the Tools menu, select the server, and paste the license string and license
check that were e-mailed to you.

2. You can create the license file yourself using a text editor or, for example, the Shell command ‘cat
> LicenseString’ from the command line. The file is named LicenseString and resides in the
FrontBase installation directory. Its format is as follows:

<64 character license string>:<16 character license checksum>

Installation
Keeping Current

Users Guide FB-59

3.6 Keeping Current
FrontBase is continually being improved. However you have obtained FrontBase, if it is some time ago,
you most likely are not running the latest version (nor reading the latest documentation!).

3.6.1 Determining the Latest Version
The latest version of FrontBase available for your platform of choice is identified at the Download section
of the FrontBase Web site: http://www.frontbase.com

3.6.2 Determining your Current Version
3.6.2.1 Using sql92
Establish a connection to a FrontBase database; then execute the following SQL statement:

VALUES(SERVER_NAME);

The version of FrontBase currently running as well as the version of FrontBase used to create the database
will be returned.

3.6.2.2 FrontBaseManager (Mac OS X) and FrontBaseJManager (Java)
The simplest way is to connect to a database and look at the ‘Database’ pane, or you can execute the
following SQL statement:

VALUES(SERVER_NAME);

The version of FrontBase currently running as well as the version of FrontBase used to create the database
will be returned.

3.6.2.3 Command Line / Terminal
Starting FrontBase with the -v invocation option also details the version of FrontBase in use:

FrontBase -v

Installation
Keeping Current

FB-60 Users Guide

3.6.3 Upgrading your FrontBase Server
When you need to upgrade, go to the Download section of the FrontBase Web site:
http://www.frontbase.com, choose your platform and download the FrontBase software. Then proceed to
section “Installation” on page 25 and follow instructions there.

NOTE: If you currently have a previous version of FrontBase installed and running on your server,
pay careful attention to the upgrade instructions!

FB-61 Users Guide

4 Basic Concepts
This chapter is divided into the following sections:

• SQL 92 Concepts on page 61
• Understanding Transactions on page 66

4.1 SQL 92 Concepts
SQL 92 is the latest official standard for SQL from the ANSI/ISO bodies and as such represents many
years of experience with the language SQL and the various implementations.

FrontBase is the first industrial strength database server that implements virtually all of SQL 92. This may
not be important to the work you want to do with a database server, but there are at least a couple of issues
that you need to be aware of. The concept of SCHEMAs can sometimes cause confusion with other
vendors’ terminology. While many products on the market use the word SCHEMA in their literature, very
few implement this concept (at least in the SQL 92 sense).

Actually, there is a layer on top of SCHEMAs called a CATALOG. An SQL 92 database is comprised of a
number of CATALOGs, each holding a number of SCHEMAs. A SCHEMA can be viewed as the
container for a number of objects: TABLEs, VIEWs, DOMAINs, COLLATIONs, etc.

The topics in this section are:

• CATALOGs on page 61
• SCHEMAs on page 62
• USERs on page 63
• DATE, TIME and TIMESTAMP on page 64
• Keywords and Identifiers on page 65
• Learning more about SQL 92 on page 65

4.1.1 CATALOGs
Currently, FrontBase offers the support for one CATALOG in a database. This CATALOG inherits the
name of the database, e.g. if the database was created with the name Movies.fb, the catalog is named
MOVIES. This catalog name is always used as the default catalog and thus you don't really need to worry
about CATALOGs.

Basic Concepts
SQL 92 Concepts

FB-62 Users Guide

4.1.2 SCHEMAs
As mentioned earlier, a catalog can contain many SCHEMAs. A SCHEMA is owned by a user (see further
below) and only this user can add or drop objects in the SCHEMA. A SCHEMA object can be a table, a
view, a domain, ... By means of the GRANT/REVOKE statements, other users can be granted a number of
privileges pertaining to the objects within a schema, e.g. the INSERT privilege on a table.

Objects in a SCHEMA can be referenced via so-called qualified names:

[[<catalog-name>.] <schema-name>.] <object-name>

SQL 92 offers a rich "default for everything" setup, so whenever you want to reference objects in the
current SCHEMA, only the <object-name> needs to be given.

When a new database is created, two SCHEMAs are created as well: DEFINITION_SCHEMA and
INFORMATION_SCHEMA as required by the SQL 92 standard. The DEFINITION_SCHEMA holds all
the objects used to maintain all other SCHEMAs. The INFORMATION_SCHEMA holds various objects,
which offer access to the objects in the DEFINITION_SCHEMA, and a number of convenience objects.
For example if you want to see which TABLEs have been defined in a database, the following SQL 92
statement could be executed:

SELECT * FROM information_schema.tables;

information_schema.tables is actually a view defined like:

CREATE VIEW information_schema.tables AS SELECT * FROM
definition_schema.tables;

The views in information_schema are all non-updateable, i.e. an INSERT like:

INSERT INTO information_schema.tables -- will fail.

The defintion_schema is maintained exclusively by FrontBase and cannot be accessed or manipulated
directly by any user.

To create a new schema (which the current user will then own):

CREATE SCHEMA <schema-name>;

Basic Concepts
SQL 92 Concepts

Users Guide FB-63

NOTE: See the SQL 92 standard for the complete syntax of which the example is only but a tiny
fragment.

To make a schema the current schema:

SET SCHEMA '<schema-name>';

NOTE: (Please note that the schema name is given using a character string).

To see the list of defined schemas:

SELECT * FROM information_schema.schemata;

To see what is the current schema, the CURRENT_SCHEMA string function is available. Please note that
CURRENT_SCHEMA is a FrontBase extension to SQL 92.

4.1.3 USERs
The concept of users in SQL 92 is relatively simple, but is tied very closely to the concept of schemas.

To access a database, a user name is required; otherwise access is denied (FrontBase offers password
protection as an extension to SQL 92).

When a new database is created, a number of user names are also created, among which are: _SYSTEM
and _PUBLIC. Both these user names are considered by SQL 92 as special user names, in fact the leading
underscore cannot be used in regular identifiers, and is not to be used.

To create a new user:

CREATE USER <user-name> [DEFAULT SCHEMA <schema-name>];

To change the default schema:

ALTER USER <user-name> SET DEFAULT SCHEMA <schema-name>;

Basic Concepts
SQL 92 Concepts

FB-64 Users Guide

The optional <schema-name>, which must exist when the user name is created, will be the default schema
for the user whenever the database is accessed. If no default <schema-name> is given, a schema with the
same spelling as the user name is created and used as default (this will happen the first time the user
accesses the database).

To see who is the current user

The USER and CURRENT_USER string functions can be used (USER is simply a shorthand for
CURRENT_USER).

To make a user name the current user:

SET SESSION AUTHORIZATION <user-name>;

To see the list of defined user names:

SELECT * FROM information_schema.users;

4.1.4 DATE, TIME and TIMESTAMP
SQL 92 has an elaborate time concept that includes the following data types:

– DATE
– TIME
– TIME WITH TIME ZONE
– TIMESTAMP
– TIMESTAMP WITH TIME ZONE

DATE holds year, month and day, i.e. NO time components.
TIME holds hour, minute, and second.
TIMESTAMP holds year, month, day, hour, minute, and second.

When a TIME or TIMESTAMP literal is inserted into a database, the server's time zone is added to the
literal. Example: If the server is running in Denmark and it is August, the server's time zone is
GMT+02:00. If TIMESTAMP '1999-08-02 11:49:00' is inserted, the literal is thus adjusted with +02:00.
If, however, TIMESTAMP '1999-01-02 11:49:00' is inserted, the literal is adjusted with +01:00 (because
there is no daylight savings time in January).

If you want to be in full control over the time zones, you should use the TIMESTAMP WITH TIME
ZONE data type.

Basic Concepts
SQL 92 Concepts

Users Guide FB-65

Example: TIMESTAMP '1999-08-02 11:49:00-08:00'.

The same comments apply to TIME and TIME WITH TIME ZONE.

4.1.5 Keywords and Identifiers
SQL 92 has a very extensive set of keywords and you may run into some surprises when selecting the
spelling for an identifier of yours. It may very well collide with the spelling of an SQL 92 keyword. Please
also note that an identifier cannot begin with an underscore.

There are a couple of ways to reduce the "collision problems":

1. There is no keyword in SQL 92 ending with an underscore, e.g. it will be perfectly legal to use
SELECT_ as an identifier.

2. By enclosing the identifier in double quotes, essentially any spelling can be used as an identifier,
e.g. "SELECT" is a legal identifier.

3. You could, for example, avoid collisions by ending table names with "_tbl", and field names with
"_fld" or "_col"

SQL 92 is case insensitive e.g. Movies as an identifier is considered identical to MOVIES.

4.1.6 Learning More About SQL 92
You can always get hold of a copy of the standard itself from either ANSI or ISO, but the standard is not
really aimed at users. A better way to get acquainted with SQL 92 is to buy "A Guide to The SQL
Standard, Fourth Edition" by Chris J. Date and Hugh Darwen. This book explains all concepts and
constructs of SQL 92, sometimes with quite an academic viewpoint, but nonetheless very complete and
absolutely readable and understandable.

The book is published by Addison-Wesley and has ISBN #: 0-201-96426-0. An easy way to order this
book is to go to www.amazon.com, but your local bookstore will most likely be able to help you as well.

Basic Concepts
Understanding Transactions

FB-66 Users Guide

4.2 Understanding Transactions
This section briefly describes the database concepts of transactions, isolation levels, locking discipline,
and updatability, all concepts that are used for controlling simultaneous access to a FrontBase database.

4.2.1 Simultaneous Access
One of the basic features of a database server is to provide users with parallel access to shared data, thus
the database server must ensure that updates made to a database are performed in an orderly manner such
that data is not corrupted or lost.

4.2.2 Transactions
A transaction is used to control users’ access to the database. A user cannot access the database without a
transaction, and all operations are performed in the context of a transaction. All the changes made to the
database by a user in the context of a transaction are made visible to other users when the transaction is
committed. A transaction is, as seen from the outside, one single atomic operation.

During its existence a transaction may fail, and you cannot commit a transaction that has failed, the only
action to take is to start all over again (with the hope that the transaction will not fail the next time
around). A database server can, in principle, fail transactions at will, but a good server will only fail a
transaction for a good reason. The only good reason is an access conflict such as a deadlock.

When a transaction is created it is assigned an isolation level, an updateability, and a locking discipline.
The isolation level determines how isolated a transaction is from other transactions, the updateability
determines if the access is read only or read write, and the locking discipline determines the type of lock
used to synchronize access to the database.

4.2.3 Updateability
The updateability can be READ ONLY or READ WRITE. A transaction that has the updateability of
READ ONLY cannot modify the database. The updateability is quite important because transactions that
are READ ONLY do not interfere.

4.2.4 Isolation level
SQL 92 defines 4 isolation levels:

– READ UNCOMMITTED
– READ COMMITTED
– REPEATABLE READ
– SERIALIZABLE

Basic Concepts
Understanding Transactions

Users Guide FB-67

FrontBase defines one more:

– VERSIONED

Users accessing data in the database may experience the following phenomena:

Dirty reads One transaction is writing some data to the database, a second transaction is then
reading that data, but the first rolls the transaction back. The second transaction
has now read data that did not really exist.

Non-repeatable Read A transaction reads a row. A second transaction updates the values of the row
and does a COMMIT. If the first transaction reads the row again it will get a
different result.

Phantom One transaction selects some data in the database; a second transaction updates
or inserts rows that satisfy the predicates that the first transaction used. The
second transaction is committed. If the first transaction performs the select
again, it would get a different result.

The table below shows which phenomena a given isolation level permits:

Dirty Reads Non-repeatable Phantom

READ
UNCOMMITTED YES YES YES

READ
COMMITTED NO YES YES

REPEATABLE
READ NO NO YES

SERIALIZABLE NO NO NO

VERSIONED NO NO NO

The amount of data that is locked is reflected by the isolation level. With READ UNCOMMITTED
nothing is locked and the isolation level is actually upgraded to READ COMMITTED in FrontBase. With
READ COMMITTED nothing is locked, but only data that is committed is read. REPEATABLE READ
locks rows as they are selected, in other words, immediately as part of the query execution.
SERIALIZABLE locks the whole table. In FrontBase, row locks are not escalated to table locks at any
point.

Basic Concepts
Understanding Transactions

FB-68 Users Guide

The VERSIONED isolation level is only valid for READ ONLY transactions and will keep the current
version of the database for the duration of the transaction, in effect creating a snapshot of the database at
the time the transaction was created. Other transactions may modify the database, but the changes will not
be visible to the VERSIONED transaction. Any number of VERSIONED transactions can be ongoing at
the same time, sharing committed versions of the database.

4.2.5 Locking Discipline
In addition to updateability and isolation level, FrontBase introduces the concept of locking discipline.
The locking discipline has the following values:

PESSIMISTIC PESSIMISTIC locking assumes that the given object will be changed, i.e. a transaction
must wait until the object is available (unlocked). When a transaction is waiting there
is a possibility for deadlocks. Deadlocks are detected and broken by failing one of the
transactions causing the deadlock. FrontBase detects a deadlock when two or more
connections are competing for exclusive access to the same resources and when none
of them can continue before they have acquired all the requested recourses. The
connection that causes the deadlock to become a problem is the transaction that will
get rolled back.

OPTIMISTIC OPTIMISTIC locking assumes that a given object isn't changed by other transactions,
and any changes are performed without further ado. When the transaction is committed
it is checked that the accessed objects weren't changed during the transaction; if they
were changed, the commit fails.

DEFERRED DEFERRED (also called upgradeable) is a version of PESSIMISTIC locking which
assumes that objects are only read, initially the lock is a read lock and if the object is
updated the lock is upgraded to a write lock.

4.2.6 Locking and Enterprise Objects Framework
Apple’s Enterprise Objects Framework (EOF) is using OPTIMISTIC locking; a transaction is started by,
for example, a fetch and is terminated when changes are saved. EOF only checks the objects that are going
to be updated. This is not entirely correct; all objects that have been accessed should be checked. The user
loads a number of rows, does some calculations and stores the result in a row. All the rows used for the
calculation may be changed, which is undetected, and the result would be wrong.

FrontBase does implement OPTIMISTIC locking. The limited check problem with EOF (outlined above)
can be solved by allowing nested transactions on the client; start a transaction when the user selects
objects and commit it when the user saves the changes. Actual ROLLBACK and COMMIT should be
made available to the user. If the server implements the locking, the locking in the EOF is redundant, and
snapshots etc. may be turned off.

FB-69 Users Guide

5 Administration
FrontBase is designed to be "zero-maintenance", and for many applications, starting up a database may be
all you need to do. More advanced or critical applications may involve managing users, backing up,
keeping your installation current, tuning, and other tasks. These tasks are designed to be simple and
straightforward, and many of them may be carried out from the command line of a terminal window.
These are explained in this chapter. FrontBase furthermore offers three primary tools for administering
your FrontBase server detailed overleaf. The examples in this chapter assume that you are logged in as the
user owning the FrontBase installation and that the <FB home>/FrontBase/bin directory is in your
$PATH.

This chapter contains the following sections:

• Administration Tools on page 70
• Transaction Logging on page 71
• Replication on page 76
• Clustering on page 80
• Backup and Restore on page 85
• Enhanced Flat-File Import and Export Functions on page 88
• Index Management on page 94
• Storage Management on page 97
• Tuning FrontBase on page 101
• Migration on page 116
• Troubleshooting on page 118

Administration
Administration Tools

FB-70 Users Guide

5.1 Administration Tools
The sql92 command-line tool and the FrontBaseManager application (for Mac OS X and Mac OS X
Server 10.x) are each described in separate chapters as indicated below:

5.1.1 FrontBaseManager
FrontBaseManager on page 123, introduces the application that lets you monitor and administer local and
remote database servers. It is available for Mac OS X installations of FrontBase. Windows installations
use the original FBManager.

5.1.2 FrontBaseJManager
The FrontBaseJManager is a Java application with much the same functionality as the FrontBaseManager
on page 123.

5.1.3 sql92
sql92 on page 177 introduces the FrontBase command-line tool, which is available for all installations of
FrontBase.

5.1.4 FBScriptAgent
FBScriptAgent is a “scriptable” application that forwards commands to the FrontBase database. In
addition to sending raw SQL commands, FBScriptAgent can start, stop, create, and delete FrontBase
databases. FBScriptAgent exposes a great deal of database functionality that has previously only been
available through more complex database client libraries. A user can now access the powerful features of
FrontBase simply by keying in a few AppleScript commands.

A clever design aspect of FBScriptAgent is that it allows the scripter to deal with meta-data and data-
handlers. For example, if a database fetch were to select 1,000,000 records, this would be difficult for
most applications to deal with if all the records were returned. Instead, FBScriptAgent fetches return a
meta-data object by which a user can determine how many records were selected, any errors or warnings
generated by the select, the execution time, the column names, etc. The meta-data also includes a fetch
“handle”, which may be used to actually fetch the rows, in batches if required. A hallmark of the
intelligent engineering of FBScriptAgent is how easily it allows a user to work with massive amounts of
data.

The application, with documentation and examples, is posted in the ‘Download’ section at
http://www.frontbase.com/

Administration
Transaction Logging

Users Guide FB-71

5.2 Transaction Logging
By default, FrontBase maintains a transaction history log. This is a complete list, in the form of SQL
statements, of all transactions that have altered data or structure in the database. Such a log therefore
provides a complete history of the database development and it is possible to re-create a database from a
particular starting point by essentially replaying the SQL statements of the transaction log. Such a
particular starting point is either the creation of the database or the point where a backup of the database
was created.

The concept of transaction logging in FrontBase serves several purposes:

1) It provides an extra level of security against loss of data

2) It enables the database server to decouple its client interface handling from its handling of disk
operations (i.e. the client handling does not have to wait for disk write operations to be completed)

3) It serves as the basis for database clustering and replication.

The second point above implies that the transaction log may be "ahead" of the actual database contents at
any given point in time. When FrontBase is started for an existing database, it therefore automatically
examines if the transaction log contains transactions that have not been committed to the database and in
this case the database is brought up-to-date by executing and committing those transactions.

This mechanism of automatically bringing a database up-to-date with respect to its transaction log is also
useful in connection with clustering and replication. Replication and clustering are two distinct methods
for obtaining both redundancy (protect from downtime when a server becomes unavailable) and load
distribution (better response time in heavy load situations).

The following sections explain the various elements of transaction logging in FrontBase:

• Implementation on page 71
• Administration on page 72
• SQL syntax on page 73
• Transaction Log Commands in sql92 on page 73
• Options on page 74
• FBTLogs on page 74
• FBTLog on page 75

5.2.1 Implementation
The transaction log of a database is found in the TransactionLogs directory of the FrontBase installation:
…/TransactionLogs/<database-name>.

Administration
Transaction Logging

FB-72 Users Guide

This directory contains one or more transaction log directories, each of which are named:
L_yyyy_mm_dd-hh_mm_ss, identifying the point in time when the directory was created. The names
should therefore provide the correct ordering of the transaction log directories when more than one exists.
The directory also contains a file named .lock, which is used to prevent more than one FrontBase server at
a time writing to this transaction log.

A transaction log directory contains a file named transactions.log plus possibly files named tttttttt.sql
(where tttttttt is a transaction number). The latter files contain particularly large transactions. FrontBase
attempts to keep the log of a transaction in memory while it is ongoing, only writing it to the log file when
the transaction is committed. However, there is a limit on the size of the in-core transaction (currently 1
MB) which, when exceeded, implies that the transaction is written to a log file of its own.

There is a limit to the (combined) size of files kept in a transaction log directory which, when exceeded,
implies that a new transaction log directory is created. This limit is 512 MB by default, but may be
changed by the user.

When a transaction log is used to update a database from a particular starting point, it is obviously
necessary that the starting point is well defined. It is therefore such that when a backup of a database is
created, a change in the transaction log directory will indivisibly take place. The names of the backup file
and the new transaction log directory will be identical, except for the first character (B and L,
respectively).

5.2.2 Administration
The use of transaction logging is optional, but it is the FrontBase default and strongly recommended for
added safekeeping. Notice that transaction logging is required for running FrontBase in replication and
clustering contexts.

When transaction logging is enabled, FrontBase permits the user interface to continue even before a
transaction has been physically written to the file system. This may mean that the transaction log is
"ahead" of the database as found on the disk, and in this situation the transaction log is vital for preserving
transactions. The state of the database on the disk is always consistent - i.e. it reflects the latest transaction
actually written to the disk - but it may actually lag behind the state of the transaction log.

When the FrontBase server is started on an existing database, it is automatically verified that the database
is up-to-date with respect to the transaction log (if present), and if not, it is brought so. This implies that
the latest transaction log directory is definitively always relevant. In general, it is difficult to predict
exactly when changes to the transaction log directory (brought about by the log size limitation) takes
place, and it is also difficult to predict just how far the transaction log is ahead of the database (it may be
hundreds of transactions, or more). Therefore it is safest to state that transaction log files are relevant back
to the latest well-defined starting point: Database creation or backup point.

It is never necessary to remove transaction log files for any other reason than disk space economy.

Administration
Transaction Logging

Users Guide FB-73

The following simple rule dictates the administrative handling of transaction logging: A database backup
indivisibly creates a new transaction log directory and makes all previous transaction log directories
obsolete.

This means that with respect to the just created backup, all previous transaction log directories may be
deleted. How many generations of backup and accompanying transaction logs an installation wishes to
keep before physically deleting them is an individual matter.

5.2.3 SQL syntax
The following SQL statements have been introduced for handling transaction logging:

CREATE TRANSACTION LOG;

Enables transaction logging (default and strongly recommended). If transaction logging is disabled, a new
transaction log directory will be created.

DROP TRANSACTION LOG;

Disables transaction logging (not recommended).

SET TRANSACTION LOG LIMIT <integer-expr>;

Sets the size of a transaction log directory to n MB, where n is the value specified by <integer-expr>.

SWITCH TO NEW TRANSACTION LOG;

Creates a new transaction log directory.

WRITE BACKUP [TO <path-expr>] [COMPRESSED];

Creates a backup of the database and indivisibly creates a new transaction log directory. This way, the
backup provides a well-defined starting point for the transaction log just initiated.

5.2.4 sql92 Command

SHOW LOGS [ALL | <integer-expr>];

Administration
Transaction Logging

FB-74 Users Guide

Shows a summary of the n latest transaction log directories, where n is the value specified by <integer-
expr>. A value of 0 (or ALL) implies all existing transaction log directories. The absence of <integer-
expr> implies 1 (i.e. the newest).

5.2.5 FrontBase Options
Options may be specified when a FrontBase server is started – see FrontBase Invocation on page 198 for a
complete description. The following are relevant for transaction logging:

-clients=no | yes If no is specified, FrontBase will exit after its initialization phase, just
prior to otherwise accepting client connections. This simply brings the
database up-to-date with its transaction log.

-keeptlog Prevents the server from clearing the transaction log, if one exists.

-rollforward=no | <number> Changes the default behavior of the server with respect to the transaction
log, if present. If <number> is specified, its value determines the last
transaction number that will be committed to the database; if no is
specified, no transactions from the transaction log are committed to the
database.

-tlog=no | yes Overrides, at the time of starting the server, the transaction-logging
mode stored with the database; this mode, however, is not permanently
changed.

-transaction=<number> If <number> is specified, its value becomes the transaction number of
the database, just prior to transaction log handling. This specifies the
starting point in the transaction log for bringing the database up-to-date.

Neither of these options are useful during normal (nominal) operation.

5.2.6 FBTLogs
This utility is part of your FrontBase installation:

FBTLogs [-c] [-d <transactionlog-directory>] [-s <file-count>] [-v]
[<database-name>]

Shows a summary of the n latest transaction log directories, where n is the value specified by <file-count>.
A value of 0 (default) implies all existing transaction log directories.

Administration
Transaction Logging

Users Guide FB-75

The -d option identifies the specified transaction log directory as the object of the summaries, and only if
this is specified may <database-name> be omitted.

The -c option forces FBTLogs to interpret all transaction log files in order to verify that they may be read
correctly.

The -v option specifies that slightly more information is output.

5.2.7 FBTLog
This utility is part of your FrontBase installation:

FBTLog [-c] [-d <transactionlog-directory>] [-k <key-filename>] [-n
<number>] <database-name> [<first-number> [<last-number>]]

Lists transactions in a transaction log, by default starting from the oldest transaction in the latest coherent
transaction log sequence. If specified, <first-number> and <last-number> identify the range of transaction
numbers that should be listed.

The -d option identifies the specified transaction log directory as the starting point.

The -k option identifies an encryption key file; this is needed if a decryption of an encrypted transaction
log is wanted.

The -c option forces FBTLog to interpret all transaction log files in order to verify that they may be read
correctly.

The -n option makes FBTLog list transactions in a form that may directly serve as SQL input to a
database; <number> specifies how many transactions should be included in every commit, ie. when
<number> equals 1, transactions are committed in the same way as when the transaction log was created.

Administration
Replication

FB-76 Users Guide

5.3 Replication
A replication setup is a number of database servers that logically implement one and the same database,
even though the database exists in several copies, one for the master and one for each replication client.
FrontBase supports replication of a master database to several read-only clients that are updated when the
master is updated. The clients have a fairly loose coupling to the master; a client may, for example, be out-
of-date when it has been off-line for a while. When a client comes on-line again it will be updated with the
transactions that were executed while it was off-line.

The transaction log of the master database represents an externally accessible serialization of the
transactions committed to the master database. The replication mechanism (the Replicator) described
below thus only needs to be able to read the transaction log of the master database, and the server for the
master database does not need to be aware of the presence or not of the replication mechanism. This
implies a very loose coupling between the master database and the replication clients, as well as absolutely
no overhead on the part of the master database (we strongly recommend that transaction logging is
enabled, whether replication or clustering are used or not!). Therefore, replication of a master database can
be used to off-load time consuming backup and report writing tasks from the master, and a client may
serve as a backup in itself. Apart from that, replication may be used for the more traditional distribution of
read-only copies of a database.

As the clients are all read-only, a transaction can be committed on the master without any synchronization
with the clients, and the migration of changes from the master to the clients does not require elaborate
synchronization, such as the two-phase commit protocol required for clustering, but can be controlled
simply by counting the transactions that have been executed on the master and on the clients.

A replication setup consists of:

– The Replication Master
– The Replicator
– The Replication Clients

5.3.1 Replication Master
Any database for which transaction logging is activated may serve as a replication master. Technically, the
server for the replication master database should be started with the -rmaster option.

5.3.2 Replicator Daemon
The replication of a master database is performed by a separate program (or process), the Replicator,
which reads the transaction log produced by the server for the master database. The transaction log
contains SQL for all modifications to the master. When a transaction is committed, the SQL for the
transaction is written to the transaction log. Only SQL that actually modifies the database is written to the
log.

Administration
Replication

Users Guide FB-77

The Replicator monitors the transaction log of the master and whenever a transaction has been written
completely to the log file, this SQL is executed by the Replicator on all the accessible clients. The
monitoring of the transaction log is basically a polling with a configurable interval that controls the
reaction time of the Replicator. In order not to have any interference among the clients, replication to each
client is performed in its own thread of control, such that potential communication delay with one client
does not affect any other client.

The Replicator may be managed by e.g. the FrontBaseManager or by the sql92 command line tool, as
illustrated below. It may also be started from the command line, as follows:

FBReplicator [-bsv] [-i <interval>] [-d <transactionlog-directory>]
[-p <portno>] [-k <keyfile] <database>

The Replicator accepts the following options:

-b Run as a background program (i.e., without controlling terminal).

-s Silent. The Replicator will not log events to stdout (default).

-v Verbose. The Replicator will log events to stdout.

-i <interval> Seconds. The polling interval determines how often the Replicator will
examine the transaction log of the master. The Replicator will only sleep
the specified amount of time when no transactions are pending
replication. The default value is 10 seconds.

-d <transactionlog-directory> Specifies the transaction log directory to be used for replication. To be
used when the transaction log is not in the default position.

-p <portno> Specifies the port number at which the Replicator will talk to the
controlling program (e.g., FBRAccess)

-k <keyfile> Specifies the file containing the encryption key for an encrypted
database. Must be specified when database is encrypted.

The Replicator must run on the same host as the master database as the Replicator examines and reads the
transaction log of the master.

5.3.3 Replication Clients
The replication clients are ordinary database servers that must be started with the -rclient option (otherwise
the Replicator will not talk to them). This disallows the users of the replication clients from updating the

Administration
Replication

FB-78 Users Guide

database. The client databases must share a common history with the master database which means that
they must have been created in a replication setup with the master, or have been started from some sort of
copy of the master database (see section "Backup and Restore" on page 85).

5.3.4 Replication and Passwords
The Replicator is in all respects an ordinary user for the replication clients, using the standard client
library. When it establishes contact to a client, it does that as the _SYSTEM user, and is thus required to
know the database and _SYSTEM passwords in order to establish a connection. The Replicator keeps
track of the current passwords for a given client, so you may change the passwords on the master even
when a client is off-line.

5.3.5 Replication and Encryption
When the master database is encrypted, the Replicator must be informed of the encryption key, so that it
can decrypt transactions written to the master transaction log. The replication clients do not have to be
encrypted, or may be encrypted with an encryption key different from the master. In all cases, the
communication of transactions by the Replicator to the replication clients is in clear SQL.

5.3.6 Database Identification Checks
Each FrontBase database has a 48-bit unique identification. The master database and all the client
databases must share the same unique database identifier, signifying that they share a common history.
This property is checked by the Replicator whenever a new client is added to a replication setup.

5.3.7 Replicating a Database
The operations available for the administration of a replication setup are, for the purposes of this
description, best illustrated in terms of the commands implemented by the sql92 command line tool, which
is part of the FrontBase installation. The full set of sql92 commands for dealing with replication is
described in section "Replication Commands" on page 187.

All replication commands require that the so-called "default database" is established. The default database
identifies the master database for a replication setup.

Any existing database (whether it has a server running or not) may serve as a master for replication:

SET DEFAULT DATABASE <master>@<masterhost>;
SHOW DEFAULT DATABASE;

The first step in setting up a replication is to start the Replicator for the master identified by the default
database:

Administration
Replication

Users Guide FB-79

START REPLICATOR;

Once the Replicator is running, the state of the replication setup may be inspected:

SHOW CLIENTS;

There are two ways of adding a new client to an existing replication setup:

ADD CLIENT <client>@<clienthost>;
CREATE CLIENT <client@<clienthost>;

The first form expects that the specified client exists and that it has a server running for it (a server started
with the -rclient option). It checks that the specified client database may enter a replication setup with the
master (database identification and transaction number checks) and, if that is the case, adds it to the client
list of the Replicator. The second form additionally makes a copy of the master database (using the
symbolic WRITE ALL ...) if the specified client database does not exist, and starts a server for the client if
no server is running.

Administration
Clustering

FB-80 Users Guide

5.4 Clustering
A cluster is a number of database servers that logically implement one and the same database, even though
the database exists in several copies, one for each cluster member. A client (a user) can connect to any
server in the cluster and access and update the database. It is a crucial property of a cluster that when a
server updates the database - i.e., commits a transaction - this transaction should (ultimately) be committed
to all the other databases in the cluster, and with the same transaction number, too. This requires:

1. Two-Phase commit
A mechanism that ensures that if a transaction is committed in one database server, it is committed
in all (available) database servers.

2. Provisions for absent servers
A mechanism that ensures that, under suitable circumstances, a cluster may continue operation
(possibly including committing of transactions) without compromising data consistency within the
cluster, even if not all cluster members are currently available.

The implementation of these mechanisms is described below.

5.4.1 Background
The reasons for clustering databases can be best described as follows:

Enhanced data security Each database server in the cluster holds a complete copy of the database,
implying that so long as one machine remains intact no data will be lost.

Load distribution A typical client application will execute read only transactions in a rate, orders
of magnitude larger than the rate of read/write transactions, and a read only
transaction will only access the cluster member it is connected to, thus the load
can be distributed.

Hot spare When a client looses a connection to one database in the cluster, it can simply
connect to another, the only data that may be lost are those of the transaction
outstanding at the point of connection loss.

Loosely speaking, the databases involved in a cluster should be identical at all times, but in a real world
this may not be entirely possible.

5.4.2 Two-Phase Commit
Whenever a database server running as part of a cluster wishes to commit a transaction, it must make sure
that the transaction is committed to all of the other active members of the cluster, or to none. This is done
in the following way:

Administration
Clustering

Users Guide FB-81

1. The committing server distributes the (SQL of the) transaction to each of the other active cluster
members; each of these verifies that the transaction may be locally committed.

2. The committing server requests a "lock" for a specific transaction number in each the other active
cluster members, in a particular order.

3. The committing server requests a "commit" for the specific transaction number in each the other
active cluster members, in the same order as above.

If any of these points fail, the entire commit has failed.

5.4.3 Provisions for Absent Servers
At any one point in time, a cluster has a static composition, a fixed set of members that is called the
current set of members. The current set of members is known to all the members in the cluster. A member
of the cluster will only accept a cluster connection from another database server, if that other server can
identify itself as one in the current set of members.

The static composition of a cluster may be changed. This implies changing the current set of members for
all members of the new cluster. Clearly, the connection check just mentioned prevents a new database
server from joining a cluster until it has been made a member of the current set of members.

The current set of members is recorded in the ClusterDescr file next to the database file. Ideally, at all
times all members of a cluster should have identical ClusterDescr files, but since the members of a cluster
may execute on different host machines, connected by inherently unstable physical connections,
inconsistencies between the ClusterDescr files of a cluster may occur. Such inconsistencies must be
resolved by user intervention, i.e. there is no automatic mechanism to maintain consistency between
ClusterDescr files.

At any one point in time, a cluster has a dynamic composition, a set of members - running database servers
- which is called the active set of members. The active set of members is necessarily a subset of the current
set of members. Within the active set of members, all servers have a connection to all other servers, which
makes it possible to carry out the two-phase commit algorithm described above.

Ideally speaking, a cluster member may only commit a transaction if it may commit this transaction in all
the other members of the cluster; this way, identity between the databases involved in the cluster is
inherently maintained. However, in a real world, the dynamic composition of a cluster may change.
Database servers may be stopped (voluntarily as well as involuntarily), physical connections between
machines may break, disks may crash, etc. It would not be acceptable if the disappearance of one server in
a cluster would make it impossible to update the remaining members of the cluster. However, care must be
taken so that inconsistencies do not arise.

Administration
Clustering

FB-82 Users Guide

Consider, for instance, a cluster with exactly two members where the physical connection between the
members break down, but the servers are still running and have client connections. If both are able to
commit transactions, an inconsistency is immediately the consequence.

In order to handle situations where not all members of the cluster are running and connected to each other
(i.e., the set of active members is smaller than the set of current members), we introduce the notion of
majority. This notion provides assistance in permitting an incomplete cluster to continue execution.
Majority is a logical property (true or false) that may be assigned true to exactly one member of a cluster;
this member is said to have majority. On top of this notion of individual server majority, we talk about an
active set of members having majority; the servers in a set of active members with majority have the right
to commit transactions.

Whenever the dynamic composition of a cluster changes, the set of connections from one server to other
servers in the cluster changes. This change forces the servers in the cluster to (individually) consider
whether they are a part of an active set of members with majority, and thus have the right to commit
transactions for the cluster. A server without the right to commit transactions is said to be readonly. A
server is a member of an active set of members with majority in the following situations:

1. The number of databases in the current set of members is odd, and our member is a member of an
active set of members that numbers more than half the number of current members. For instance, if
the cluster has a current set of three members, two of these members must be active together to have
majority; if the cluster has five current members, any three active members have majority.

2. The number of databases in the current set of members is even, and our member is a member of an
active set of members that numbers more than half the number of current members, or the active
members numbers exactly half the number of current members, and one of them has majority. For
instance, if the cluster has a current set of four members, any three of these four will have majority,
but any two of them will only have majority if one of them has been assigned the majority property.
If the cluster has a current set of two members, only the member with assigned majority, if any, has
majority.

3. The number of databases in the current set of members is two, and our member is running, and it
can reach the host of the other member and thus make sure that the other member is stopped rather
than out of communication reach.

Incidentally, it is possible, from the outside, to assign a readonly server the right to commit transactions.
Since this opens for the possibility to create inconsistencies within the databases of a cluster, it is an
inherently unsafe operation that should only be performed by someone knowledgeable.

5.4.4 Clustering and Passwords
Cluster members establish connections to each other as the _SYSTEM user and are thus required to know
the database and _SYSTEM passwords of the other members. Each cluster member assumes that these
passwords are the same for the other members as for itself. This is almost always true. However, if not all

Administration
Clustering

Users Guide FB-83

the members in a cluster are up-to-date, it may not be true, and the necessary connections may not be
established; in this case, it is necessary to provide copies of the most advanced cluster member for the
other cluster members. This situation occurs because passwords were changed for one cluster member
while not all cluster members were active; it may thus be concluded that it is unfortunate to change
passwords if not all of the cluster members are active.

5.4.5 Clustering and Encryption
Cluster members do not have to be encrypted in the same way. This means that some members of a cluster
may be encrypted and others are not, or the cluster members may be encrypted with different encryption
keys. In all cases, the communication of transactions between cluster members are in clear SQL.

5.4.6 Database Identification Checks
Each FrontBase database has a 48-bit unique identification. All members of a database cluster must share
the same unique database identifier, signifying that they share a common history. This property is checked
whenever a new member is added to a cluster.

5.4.7 Clustering a Database
Most of the operations for cluster handling/administration are non-trivial, and for the purposes of this
description are best illustrated in terms of the commands implemented by the sql92 command line tool,
which is part of the FrontBase installation. The full set of sql92 commands for dealing with clustering is
described in section "Clustering Commands" on page 187.

All (well, most, anyway) clustering commands require that the so-called "default database" is established.
The default database is an arbitrary member of a cluster (before cluster creation, it is an arbitrary database,
soon to become the first member of a cluster). It serves merely as an access point to a ClusterDescr file
and plays otherwise no special role in the cluster:

SET DEFAULT DATABASE <database>@<host>;
SHOW DEFAULT DATABASE;

The creation of a cluster should not be confused with the creation of a database, these are two distinct
operations. Essentially, the creation of a cluster consists of adding a ClusterDescr file, containing only the
name of the database itself, to an existing database. The fact that the command below may actually create
the default database, and certainly attempts to also start a server for the default database, is for
convenience only.

CREATE CLUSTER;

Administration
Clustering

FB-84 Users Guide

Once a cluster has come into existence, new members may be added. The essential part of the operation
here is the addition of the relevant database name to the ClusterDescr files of the resulting cluster
members. The database identification checks must succeed, and furthermore, the transaction number of the
new cluster member must be less than or equal to the transaction number of any existing member of the
cluster; in case of less than, it must be possible to bring the new member up-to-date from the transaction
log of one of the existing members. One way of ensuring that all of these conditions are satisfied is to
"initialize" the new member with a backup of sorts from an existing member. See the section "Backup and
Restore" on page 85.

ADD MEMBER <database>@<host>;

It is often relevant to inspect the current composition (static as well as dynamic) of a cluster:

SHOW CLUSTER;
SHOW CLUSTER DESCRIPTOR;
SHOW CLUSTER ALL;

It is possible to start and stop an entire cluster in one go. Notice in particular, that the start command will
examine the transaction numbers of the cluster members, and start them in the proper order (highest
number first):

START CLUSTER;
STOP CLUSTER;

Likewise it is possible to start and stop individual members of a cluster. In this case, it is your
responsibility to start members in the proper order.

START MEMBER <database>@<hostname>;
STOP MEMBER <database>@<hostname>;

It may be that the default majority handling is not completely satisfactory for all cluster setups; it is thus
possible explicitly to assign majority to a particular cluster member:

SET MEMBER <database>@<hostname> MAJORITY TRUE;

Finally, in emergencies, it is possible to remove the readonly property from a cluster member that has (by
accident!?) acquired it:

Administration
Backup and Restore

Users Guide FB-85

SET MEMBER <database>@<hostname> READONLY FALSE;

5.5 Backup and Restore
FrontBase allows you to export a complete database to flat files. It allows you to restore content data from
ASCII flat files directly into your database. FrontBase can even backup a "live" database.

You should backup critical databases on a regular basis to protect from loss due to hardware failures, lost
files, or other catastrophes. You will also need to backup when moving your FrontBase databases to a new
server or when sending them to FrontBase for diagnosis.

NOTE: We have seen that Mac OS X Server 1.x, when swapping under heavy load, can cause
unfortunate problems in the file system. These file system problems can impact the FrontBase database
files. We highly recommend upgrading to Mac OS X Server 10.x in order to avoid these potential
problems.

5.5.1 Overview
As the measures you can take to safeguard your databases are identical on all platforms and because it
makes sense to protect your data in general, we have produced this write-up of the possible strategies you
can pursue.

This section contains the following:

• Copy the Database Files on page 85
• Backup of a Live Database on page 86
• Restoring a Database on page 86
• Export Into Flat-Files on page 87
• Replication on page 87

5.5.2 Copy the Database Files
This strategy is very simple, basic, and certainly better than nothing.

FrontBase stores its database files in <FB home>/FrontBase/Databases. You can backup the contents of
this directory by using your preferred backup utility. The tar utility is available on all Linux/ Unix
systems. It needs to be executed from the command line:

tar cvf <destination-file> <FB home>/FrontBase/Databases

Administration
Backup and Restore

FB-86 Users Guide

Example for Mac OS X Server 10.x (the backup is created in current directory):

tar cvf fbbackup /Library/FrontBase/Databases

NOTE: You need to STOP ALL FrontBase servers before making the backup.

5.5.3 Backup of a Live Database
With FrontBase you can create a backup of a database while it is running. The backup is non-obtrusive
and the database can continue to be updated while the backup progresses.

You need to connect to a database as the user _SYSTEM and issue the following SQL statement:

WRITE BACKUP [TO <path-name-expr>] [COMPRESSED];

where <path-name-expr> is a general expression, of a character type, that is to specify the full pathname of
where the backup file should go. If COMPRESSED is specified, the backup is compressed to reduce its
size.

On most systems, the task of starting the backup can be automated. On Linux and Unix systems the cron
utility and the sql92 command line tool can, together, automate the process.

5.5.4 Restoring a Database

TIP: As an extra safeguard measure, prior to doing a restore from a backup, we strongly recommend
you make a copy of the "old" database files in <FB home>/FrontBase/Databases first.

To restore a database from a backup, you need to do so from a command line (logged in as root):

FrontBase -create -restore <database-name>

If the backup has been written to a path other than the default location, the full path to the backup file must
be specified:

FrontBase -create –restore=<path-name-expr> <database-name>

Administration
Backup and Restore

Users Guide FB-87

5.5.5 Export into Flat-Files
FrontBase can export an entire database, schema definitions and contents, into flat files in ASCII format
from which a database can later be rebuilt.

Two purposes of the flat-file export/import functionality are:

1. Export and Import of a database in ASCII form.

2. Porting of a database between platforms of different "endian" type (big-endian/little-endian).

The following SQL 92 statements will respectively export and import a complete database:

WRITE ALL OUTPUT(DIR='<path-to-export-directory>', CONTENT=TRUE);

SCRIPT <path-to-export-directory>/schema.sql;

This approach is described fully in the section “Enhanced Flat-File Import and Export Functions” on page
88.

5.5.6 Replication
The replication approach is fully described in the section “Replication” on page 76. Replication is a way to
have a master database, which receives all updates etc., and N mirrored databases that are read-only copies
of the master.

A "suspender and belt" approach could be to have two mirrored databases, one that handles the usual
database traffic and one that handles also the backups. This will assure a very high degree of safety, with
multiple machines involved (could easily be multi-platform) and multiple safe guard techniques.

Administration
Enhanced Flat-File Import and Export Functions

FB-88 Users Guide

5.6 Enhanced Flat-File Import and Export Functions
FrontBase provides the simple symbolic import/export functionality described in Export into Flat-Files on
page 87. This section seeks to explain and demonstrate an enhanced implementation of Flat-File
Export/Import which is more complete and flexible.

5.6.1 Enhanced Flat-File Export Function
To improve the features, flexibility and robustness of the flat-file export function, we have enhanced the
export functionality.

WRITE ALL OUTPUT(list of <key-value-pair>);

<key-value-pair> ::= <key> = <value>
<key> ::= RSEP | CSEP | DIR | FOLDER | CONTENT
<value> ::= <general expression>

RSEP Row SEParator. <value> must be a string expression that identifies a string that
separates the rows in the actual input from each other. Certain control characters can
be escaped by using a normal backslash+letter combo:

\n new line
\r carriage return
\t horizontal tab

CSEP Column SEParator. <value> must be a string expression and it identifies a string
that separates the columns in the actual input from each other (within a row). Certain
control characters can be escaped by using a normal backslash+letter combo (see
RSEP).

DIR or FOLDER <value> must be a string expression and it identifies a string that denotes the path of
the directory (folder) into which the flat-file export will be generated. If the directory
doesn't exist, it will be attempted generated.

CONTENT <value> must be a boolean expression that evaluates to either TRUE or FALSE.
TRUE means that also the contents of tables will be exported (one file per table).

5.6.2 Enhanced Flat-File Import Filter
To improve the features, flexibility and robustness of the flat-file import, we have enhanced the import
filter functionality. This functionality in FrontBase is quite general and can cover a very wide range of file
formats:

Administration
Enhanced Flat-File Import and Export Functions

Users Guide FB-89

INSERT INTO <table> [FROM] INPUT(list of <key-value-pair>) [COMMIT
<count>];

<key-value-pair> ::= <key> = <value>
<key> ::= RSEP | CSEP | FILE | TYPE | COLUMNS | COUNT |
 SKIP | CHECK | RDQ | STOP | STRIP | RSQ |
 UNIQUE | STRIP | POSITIONS | <column name>
<value> ::= <general expression>

5.6.2.1 TYPE
<value> must be one of 'FrontBase', 'Access' or 'OpenBase'.

This value provides a hint to the import filter and implies a number of default values:

TYPE = 'FrontBase' => RSEP = '§\n',
 CSEP = '§§',
 SKIP = 1

This value also implies that the actual input file has a format that is identical to what FrontBase produces
when dumping a table into a flat-file (see WRITE TABLE).

TYPE = 'Access' => RSEP = '\n',
 CSEP = ';'

TYPE = 'OpenBase' => RSEP = '\n',
 CSEP = ' , ',
 RDQ = TRUE, SKIP = 1

The value of TYPE also implies in what format DATE, TIME and TIMESTAMP values are given.

5.6.2.2 RSEP - Row SEParator
<value> must be a string expression that identifies a string that separates the rows in the actual input from
each other. Certain control characters can be escaped by using a normal backslash+letter combo:

\n new line
\r carriage return
\t horizontal tab

Administration
Enhanced Flat-File Import and Export Functions

FB-90 Users Guide

Example: RSEP = '~\n'

5.6.2.3 CSEP - Column SEParator
<value> must be a string expression and it identifies a string that separates the columns in the actual input
from each other (within a row). Certain control characters can be escaped by using a normal
backslash+letter combo (see RSEP).

Example: CSEP = '\t'

5.6.2.4 FILE
<value> must be a string expression and it identifies a string that denotes the path of the actual flat file
input.

Example: FILE = '/tmp/db0/3_45'

5.6.2.5 COLUMNS
<value> must be a list of column names each denoting a column of the given <table>. The order in which
the column names are given is important and must match the actual input.

Example: COLUMNS = (C0, "TYPE", NULL, C1)

5.6.2.6 SKIP
<value> must be an integer expression that specifies how many lines of the actual input file are to be
unconditionally skipped before any other lines are read.

Example: SKIP = 2

5.6.2.7 COUNT
<value> must be an integer expression and it identifies for how many columns there will be values in the
actual input. COUNT is only necessary if no value for COLUMNS is specified and if TYPE = 'Access'
(the column names are assumed given on the first line of the actual input).

Administration
Enhanced Flat-File Import and Export Functions

Users Guide FB-91

Example: COUNT = 8

5.6.2.8 CHECK
<value> must be a boolean expression that evaluates to either TRUE or FALSE. TRUE means that for
each row to be inserted, all constraint checks are enforced. If FALSE is specified, no constraint checks are
enforced. It is a good idea to make sure that the input is indeed well formed if CHECK is set to FALSE,
e.g. to avoid duplicate PRIMARY KEYs.

Example: CHECK = TRUE

5.6.2.9 RDQ - Remove Double Quotes
<value> must be a boolean expression that evaluates to either TRUE or FALSE. TRUE means that if a
column value is enclosed in double quotes, they will automatically be removed.

Example: RDQ = TRUE

5.6.2.10 RSQ - Remove Single Quote
<value> must be a boolean expression that evaluates to either TRUE or FALSE. TRUE means that if a
column value is enclosed in single quotes, they will automatically be removed.

Example: RSQ = TRUE

5.6.2.11 STOP - Stop after an error has been generated
<value> must be a boolean expression that evaluates to either TRUE or FALSE. TRUE means that an
import session will be terminated once an error has been found.

Example: STOP = FALSE

5.6.2.12 POSITIONS
<value> is one of two types of a list that describes 1) the width of each value in the input or 2) the start
position (starting with one) and length of each value in the input. This makes it possible to import from
fixed width formats.

Administration
Enhanced Flat-File Import and Export Functions

FB-92 Users Guide

<value> ::= <width-list> | <start-and-width-list>
<width-list> ::= <list-of-integers>
<start-and-width-list> ::= <list-of-(<start>, <width>)

Examples: POSITIONS = (2, 4, 4, 10)
POSITIONS = ((1, 2), (3, 4), (7, 4), (11, 10))

5.6.2.13 UNIQUE - Insert a Unique Value
<value> must designate an integer column of the given file. During import a unique number will be
inserted, for the given column, into each new row. Note that this can be applied to multiple columns in a
single import.

5.6.2.14 <column-name>
<value> can be a general expression where the only requirement is that the data type of the expression
must match that of the column.

Examples: COUNTRY = 'USA'
SKIPPED = 0
SKIPPED = (SELECT SKIPPED FROM ... WHERE ...)

5.6.3 Example Import
The following import routine uses a rich text file. This example demonstrates the flexibility of the
‘Access’ type for text file imports. The column separator is defined as a comma and all quotes will be
removed. In this case the import session will be terminated once an error has been found.

INSERT INTO "_SYSTEM"."T0" FROM
 INPUT(FILE = '/var/root/Desktop/text.rtf',
 TYPE = 'Access',
 RSEP = '',
 CSEP = ',',
 SKIP = 0,
 CHECK = TRUE,
 RDQ = TRUE,
 RSQ = TRUE,
 STOP = TRUE,
 COLUMNS = ("C0")
);

Administration
Enhanced Flat-File Import and Export Functions

Users Guide FB-93

5.6.4 Bulk Imports
When doing bulk imports, either via regular INSERTs or flat-files it is advisable to follow some general
recommendations:

1) Turn auto commit off:

SET COMMIT FALSE;

2) Switch to SERIALIZABLE, PESSIMISTIC:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE, LOCKING
PESSIMISTIC;

3) Drop all constraints

4) Drop all explicit indexes

5) Do the bulk import

6) COMMIT;

7) Add constraints

8) Add explicit indexes.

9) COMMIT;

Assuming SERIALIZABLE, PESSIMISTIC, you can import as many rows you want in a single
transaction.

NOTE: It is recommended that you try to remove NULL values from your source data file before
attempting an import

Administration
Index Management

FB-94 Users Guide

5.7 Index Management

5.7.1 Indexing

CREATE INDEX [<index-name>] FOR|ON <table-name> (<column-name-
list>);

Creates an index for the given table and columns. There is no restriction on the number of indexes that can
be created for a table. There is no restriction on how many columns that can be included in an index
definition. The <index-name> is needed if the index is to be dropped later on. The current user must be the
owner of the schema that holds the specified table.

As the index is created while-you-wait, the execution of this statement may take a little time depending on
how many rows the table holds.

Please note that indexes created via CREATE INDEX are only used to optimize SELECTs, i.e. these
indexes do not imply any integrity constraint checks.

DROP INDEX <index-name>;

Drops the specified index. The current user must be the owner of the schema that holds the index.

As a convenience to aid in porting existing SQL applications, we have also introduced:

CREATE UNIQUE INDEX [<index-name>] FOR|ON <table-name> (<column-
name-list>);

This is semantically identical to:

ALTER TABLE <table-name> ADD [CONSTRAINT <index-name>] UNIQUE
(<column-name-list>) INITIALLY IMMEDIATE NOT DEFERRABLE;

5.7.2 Strategies
FrontBase offers two strategies for maintaining indexes:

PRESERVE SPACE The default strategy, called PRESERVE SPACE, is very space efficient and works
well with tables up to a few hundred thousand rows. An index on a table, no

Administration
Index Management

Users Guide FB-95

matter the number of columns, costs less than 5 bytes per row. If you have a table
with 100,000 rows, creating an index on this table will thus increase the disk
footprint by less than 500 KB. Memory efficiency is attained since column values
are not stored together with the index information (an optimized B-tree). The
downside is that rows from the table must be loaded to get column values when
using the index. This index mode works well in most cases. Users like the low
disk space footprint of a database.

PRESERVE TIME The alternative strategy, called PRESERVE TIME is fast when searching through
millions of rows at the expense of higher disk space consumption. The mode
scales very well and can easily handle tables with many millions of rows. Column
values are copied into the B-tree, which increases the disk space footprint, but
speeds up lookups considerably. The actual rows are loaded only when needed. If
a given SELECT only fetches column values that are part of an index, the actual
rows are not loaded at all. Such a SELECT is very fast.

Consider a typical indexing setup with a word table, a document table and a relation table:

CREATE TABLE word(
 word_pk INT PRIMARY KEY, -- Implies an index
 word VARCHAR(64));

CREATE INDEX ON word(word);

CREATE TABLE document(
 document_pk INT PRIMARY KEY, -- Implies an index
 document CLOB);

CREATE TABLE relation(
 word_fk INT,
 document_fk INT,
 PRIMARY KEY(word_fk, document_fk)); -- Implies an index

CREATE INDEX ON relation(document_fk, word_fk);

COMMIT;

To get a list of document_fk identifying the documents in which a given word is found:

SELECT document_fk
 FROM relation, word
 WHERE relation.wordf_k = word.word_pk AND
 word.word = '<some-word>';

Administration
SQL 99 Triggers

FB-96 Users Guide

To get a list of word_fk identifying the words found in a given document:

SELECT word_fk
 FROM relation
 WHERE document_fk = <some-document-pk>;

To find a list of document_fk identifying the documents in which two given words are found:

SELECT document_fk
 FROM relation, word
 WHERE relation.word_fk = word.word_pk AND word.word = '<word_1>'
 INTERSECT
 SELECT document_fk
 FROM relation, word
 WHERE relation.word_fk = word.word_pk AND word.word = '<word_2>'

This could/should be wrapped into a view.

In a reasonable setup with 100,000 documents and 100 words on average per document, the relation table
holds 10,000,000 rows and is a perfect candidate for PRESERVE TIME. In all of the above SELECT
statements, the actual rows would not be loaded if the indexes were set to PRESERVE TIME. The indexes
would hold the actual column values.

The word table is a less likely candidate for PRESERVE TIME. It will probably make more sense to use
PRESERVE SPACE combined with a proper sized cache for this table.

5.7.3 Index Tuning
Indexes are subject to considerations about Storage Management and Database Optimization as described
on page 97 and on page 101, respectively. Indexes are otherwise auto-managed, ie there is no need to drop
and rebuild indexes for performance reasons.

5.8 SQL 99 Triggers
The concept of Triggers was introduced with the publication of SQL:1999 and are now (with FrontBase
Release 4.2.7) supported by FrontBase. An excellent description of the concept may be found in
“SQL:1999 Understanding Relational Language Components” by Jim Melton and Alan R. Simon (ISBN
1-55860-456-1).

Administration
Storage Management

Users Guide FB-97

The syntax for Triggers are as follows:

CREATE TRIGGER <trigger name>
 <trigger action time> <trigger event>
 ON <table name> [ORDER <int expr>]
 [REFERENCING <old or new values alias list>]
 <triggered action>
<trigger action time> ::= BEFORE | AFTER
<trigger event> ::=
 INSERT | DELETE | UPDATE [OF <trigger column list>]
<triggered action> ::=
 [FOR EACH {ROW | STATEMENT}]
 WHEN <cond expr>]
 BEGIN <list of statements> END
<old or new values alias list> ::=
 {<old or new values alias>}+
<old or new values alias> ::=
 OLD [ROW] [AS] <old values correlation name> |
 NEW [ROW] [AS] <new values correlation name>

Please note that the syntax for OLD TABLE and NEW TABLE aliases is not supported.

In order for FrontBase to handle the full semantics of Triggers, the server must be started with the option
‘-triggers’ (see FrontBase Invocation on page 198).

5.9 Storage Management
FrontBase 4 lets you precisely control where the various components of a table are stored. This feature
allows you to optimize access to your data by taking into account the characteristics of the given
deployment configuration. It is possible, for example, to make large amounts of data reside on several
distinct disks, or you can exploit the availability of several disk drives with independent IO controllers to
optimize the speed of data access. Oracle has a similar, although less modern, feature called "Table
Space".

Storage management is done by means of FrontBase Advanced Device Management (FADM), the
components of which are disk zones, partitions and devices. Disk zones are basic "storage entities" onto
which particular storage components of a table may be mapped. A disk zone consists of one or more
partitions, and each such partition reside on a given device. Note that a disk zone can comprise partitions
residing on several distinct devices.

A device is a mechanism for storing data in "lumps" of a particular size. Such a lump is called an IO
block, and within a device, IO blocks are numbered from 0 and consecutively up to the size of the device.
In FrontBase, the size of an IO block is 512 bytes.

Administration
Storage Management

FB-98 Users Guide

By default, a Frontbase database defines one device, named SYSTEM and with an access path equal to
that of the database file, one partition, named SYSTEM and mapped onto the entire SYSTEM device, and
one disk zone, named SYSTEM and comprising (only) the SYSTEM partition. Initially, all storage
components of all tables are mapped onto the SYSTEM disk zone.

The storage components of a table are:

1) DATA
2) VARYING
3) INDEX
4) BLOB or CLOB (these are synonyms)

The DATA component holds all the fixed size structures associated with each row in a table.

The VARYING component holds all the varying length character strings stored in a table (that is all
strings longer than 16 bytes).

The INDEX component holds all the storage associated with all the indexes defined on a table. This can be
further refined so the storage associated with each individual index can be delegated to a particular disk
zone.

The BLOB/CLOB component holds all the storage associated with all the BLOBs and CLOBs stored in
the rows of a table.

The set of SQL commands that are available for FrontBase Advanced Device Management are described
in the following sections.

5.9.1 Device Management
A FrontBase device corresponds to a storage device accessible through the operating system (OS) of the
machine hosting a FrontBase database. A FrontBase device has a name and a size which is the number of
IO blocks that the device contains; the size indicates the maximum number of IO blocks that may be
allocated to partitions. A device is furthermore identified by an access path, which (in the underlying OS)
is interpreted like any other file access path. Device names reside in their own name space, ie cannot
collide with eg the names of partitions or disk zones.

New devices may be added to a database by specifying their name and an access path and possibly a
maximum size. If the size is not given, FrontBase derives the maximum size from the file system of the
underlying OS:

ADD DEVICE <device name> PATH ‘<device access path>’ [SIZE
<number>];

Administration
Storage Management

Users Guide FB-99

<device access path> is any file access path and <number> specifies the number of IO blocks, eg

ADD DEVICE Blobs PATH ‘/Library/FrontBase/Databases/Blobs’ SIZE
4000000;

This implies that the size of Blobs is about 2GB.

Existing devices may be changed which means that their size may be changed (unless creating a conflict
with partitions mapped onto the device):

ALTER DEVICE <device name> SIZE <number>;

An existing device may be dropped (if it is not in use):

DROP DEVICE <device name>;

Devices defined by a database may be inspected:

SELECT * FROM INFORMATION_SCHEMA.DEVICES;

5.9.2 Partition Management
A partition is a region of a device, characterized by having a base address (an IO block offset from the
beginning of the device), and a size (measured in IO blocks). The entire partition must live inside the total
size of the device. Partitions have names (with their own name space). A device may hold several
partitions, but such partitions may not overlap.

New partitions may be created:

CREATE PARTITION <partition name> ON DEVICE <device name> BASE
<number> SIZE <number>;

Existing partitions may have their base address or size changed (if this does not create inconsistencies):

ALTER PARTITION <partition name> [BASE <number>] [SIZE <number>];

Administration
Storage Management

FB-100 Users Guide

Partitions may be dropped (if they are not in use):

DROP PARTITION <partition name>;

Finally, existing partitions may be inspected:

SELECT * FROM INFORMATION_SCHEMA.PARTITIONS;

5.9.3 Disk Zone Management
A disk zone has a list of one or more partitions in which data may be stored. Disk zones have names (with
their own name space).

New disk zones may be created:

CREATE DISK ZONE <disk zone name> [WITH PARTITION <list of partition
names>];

No data may be allocated in a disk zone before it is associated with at least one partition. If a disk zone is
associated with more than one partition, data are attempted allocated in partitions in the order in which the
partitions are specified.

Disk zones may be changed by adding to or removing partitions from them:

ALTER DISK ZONE <disk zone name> ADD PARTITION <list of partition
names>;
ALTER DISK ZONE <disk zone name> DROP PARTITION <list of partition
names>;

Any data specified to reside in a disk zone and actually stored in a partition which is dropped from that
disk zone, will be moved to a partition remaining as a member of that disk zone. That data move will only
happen when the disk zone change is committed.

Disk zones may be dropped (if they are not in use):

DROP DISK ZONE <disk zone name>;

Finally, existing disk zones may be inspected:

Administration
Tuning FrontBase

Users Guide FB-101

SELECT * FROM INFORMATION_SCHEMA.DISK_ZONES;
SELECT * FROM INFORMATION_SCHEMA.DISK_ZONE_PARTITIONS;

5.9.4 Table Storage Component Management
The interesting part of disk zones, partitions and devices is to actually use them for storing data. As
mentioned above, FrontBase identifies four types of storage component associated with a table (BLOB
and CLOB are synonyms). It is now possible to specify onto which disk zone(s) the storage components of
a table should be mapped.

ALTER TABLE <table name> SET DISK ZONE <disk zone name> | DEFAULT
[FOR <list of storage components>];
<storage component> ::= DATA | VARYING | INDEX | BLOB | CLOB

The DEFAULT disk zone is a synonym for the predefined SYSTEM disk zone. If no <storage
component> is specified, the new disk zone applies for all storage components associated with the
identified table.

It is also possible for individual indexes of a table to be mapped onto a disk zone.

ALTER INDEX <index name> SET DISK ZONE <disk zone name> | DEFAULT;

The syntax for a LookSee index is slightly different:

ALTER TABLE <table name> UPDATE INDEX <LookSee index name> DISK ZONE
<disk zone name> | DEFAULT;

Notice that in all cases, if a specified storage component contains any data that should be moved to a new
disk zone, actual data movement will only take place when these SQL statements are committed.

5.10 Tuning FrontBase
As your FrontBase database gets large or your performance demands increase, you can tune FrontBase to
improve overall and specific-query performance. This section describes how to tune FrontBase using the
Raw Device Driver feature (overall performance) as well as table and index caches (specific query
performance).

Administration
Tuning FrontBase

FB-102 Users Guide

5.10.1 Database Server Performance
Database server performance depends upon three things: CPU, RAM, and disk subsystem speed.

When your database is small (i.e. up to a hundred thousand rows per table) the performance is mainly
dependent on the CPU speed: how fast the server can move data around. As your database grows larger,
less of it fits into memory. Many databases are too large to fit in RAM at all times. Caches, caching
strategies, and caching options greatly affect perceived performance. Eventually, your database becomes
many times larger than the amount of available RAM. At that point, database server speed becomes most
dependent on disk speed: how fast the server can get to the data.

Quite often, rather than upgrading your machine, you can install more RAM and upgrade the disk
subsystem. You can also give the database server hints about how to cache data so that it can use the
available RAM more effectively.

5.10.2 FrontBase's Caching Mechanisms
FrontBase offers an elaborate caching strategy with two major components accessible to and tunable by
the database developer: table caching and the raw device driver (or global cache). The crucial quality of
FrontBase caches is that the integrity offered by transactions is maintained. When data in the cache is
updated, the same data is also written to the disk upon executing a COMMIT.

5.10.2.1 Summary of Caches
The FrontBase database server actually has five distinct cache types:

The RDD Cache The RDD (raw device driver) cache is a write through cache that resides above
the file system. The major purpose of the RDD cache is to avoid reads to the
underlying storage media, but it also forms a basis for optimization of writes to
the storage media. All reads and writes go through the RDD cache. You can use
the RDD cache with normal files as with unformatted partitions.

The Descriptor Cache The implementation of the data stored for a table requires a descriptor to provide
fast access to the data. The descriptors are cached in the descriptor cache.

The Row Caches Each table has a cache for the fixed part of the rows in the table. These caches
ensure that frequently used tables reside in core, which avoids time consuming
reads from the underlying storage media.

The Dope Caches The data for columns of varying size is implemented by a fixed size reference to
the actual data for the column, such that all rows in a table have the same fixed
size. The data for the variable-sized columns is cached in the dope cache.

Administration
Tuning FrontBase

Users Guide FB-103

The Index Caches The indexes for a table are cached, either in a cache shared by all indexes for a
table, or in a cache per index, depending on the index mode.

The row, dope and index caches are collectively known as table caches.

5.10.3 When should Caching be Tuned?
If hitting the database server continually with SELECTs makes the CPU utilization percentage drop
significantly, you should tune the caching mechanisms. In this case, the database server is waiting for the
disk subsystem to deliver the data. You may be able to increase performance simply by adding RAM to
the machine, or may need to tune caching.

FrontBase offers the following caching:

• The Descriptor cache on page 103
• Table Caching on page 104
• Raw Device Driver (RDD) on page 111

5.10.4 The Descriptor Cache
Currently FrontBase does not provide any means for changing the descriptor cache. Approximately 0.2 %
of the pages in the FrontBase database file are used for providing access to the data in the file. It is
important that these pages are readily available in order to read the actual data, otherwise the system
would have first to read the descriptor off the disk and then the data.

The performance of the descriptor cache can be inspected with the sql92 command line tool by issuing the
command:

SHOW IO DESCRIPTOR;

The following headings are listed:

Cache Blocks Used The number of blocks currently used in the cache

Cache Blocks Free The number of blocks currently not used

Descriptors Read The number of descriptor read requests

Descriptors Hits The relative number of descriptor read requests that was read from the cache

Descriptors Write The number of descriptors written

Administration
Tuning FrontBase

FB-104 Users Guide

Read Count The number of data reads

Read Blocks The number of data blocks read

Write Count The number of writes

Write Blocks The number of blocks written

The most important figure for determining the performance of the Descriptor cache is the hit ratio over a
certain period. For a newly started database it should grow and stabilize at close to 100%. The rest of the
numbers give a feeling for the distribution between descriptor reads and writes and data reads and writes,
and is thus a measure of IO activity.

5.10.5 Table Caching
Table caching is a powerful feature that allows the developer to balance memory requirements against
performance.

There are a number of factors which can be detrimental to the performance of a database server, but
broadly speaking, the most significant can be grouped into two categories: those relating to competition
for the CPU, and those relating to accessing the hard drive. Clearly if other applications are competing for
the CPU, then in any given period of time the database server is able to do less. In the time that it takes for
a hard drive to complete one revolution, however, a CPU intensive application can perform small
miracles, e.g. scan over thousands of rows evaluating a WHERE clause. Anything the system does which
results in increased disk access, therefore, is likely to have serious consequences for performance.
Conversely, anything that reduces the frequency of disk access, or optimizes disk access, is likely to be of
benefit for the database server.

If the combined memory requirements of all running applications are greater than the physical memory
available, the operating system will start to swap, i.e. write/read portions of main memory to/from disk to
accommodate the combined memory requirements. Some operating systems are better at handling
swapping than others, but it is in general something that should be avoided for a production database
server. The first line of defense against poor performance is therefore simply to add RAM to the server, to
try to ensure that the system never swaps. Ultimately, however, there is a limit - whether due to physical
or financial constraints - to the amount to RAM that can be added.

There are two techniques a database server can employ to ensure that the effects of disk access are
minimized:

1) Cache data in main memory

2) Optimize disk access

Administration
Tuning FrontBase

Users Guide FB-105

Caching data in main memory is clearly an optimal technique, as most waits for the disk subsystem to
deliver data are eliminated. For larger databases, however, it may become impractical to cache all tables,
i.e. there might not be enough physical memory in the computer to accommodate 100% caching. In this
case caching all the tables may be counter-productive, as it will lead to increased disk access. The goal in
this situation should be to cache only that data which will be frequently accessed.

Optimizing disk access is almost a science in itself, but critical to a successful implementation is whether
other applications are accessing the same disk subsystem simultaneous with the database server. The
"perfect" disk access algorithm can easily be ruined by the unknown, such as some other application
reading/writing to/from the disk subsystem at unpredictable times.

For most database applications, the above may sound more serious than it is. Normally, databases are
actually fairly small and a database server can live in happy coexistence with one or more applications
accessing it, on the same computer.

Table caching allows the developer or administrator to adjust how many of the rows of a given table that
should be cached:

• Min. row count, the minimum number of rows to be cached.
• Max. row count, the maximum number or rows to be cached.
• Percentage, the percentage of the total number of rows to be cached.
• Persistent, keep the cache across transactions.
• Preload, cache the table on server start.

The Persistent setting is available (and not always ON) because in some scenarios, you may wish to
control the actual memory usage while allowing certain bursts of memory usage to occur. An example is
report generation, where each transaction can span many SELECTs and will likely reference some tables
that normally aren't in use that much. If Persistent is set to OFF for such tables, the cache will get loaded
as used and then flushed when the transaction is COMMITted.

5.10.5.1 Implementing Table Caching
When it is deployed "out of the box", FrontBase doesn’t enable any cache settings. This makes building a
new database straightforward and works very well for smaller databases and in a development
environment. Once a database solution is to be deployed, however, it may make sense to analyze the
actual use of the database and tune caches etc. accordingly.

Each table in a FrontBase can be cached on a 100% individual basis tailored to how the table is used. The
actual numbers of rows in a given table is of course also important when tuning cache settings.

There are actually a number of caches associated with a table and although they normally are assigned
reasonable default settings, it sometimes makes sense to adjust each cache individually:

Row Cache the static part of rows.

Administration
Tuning FrontBase

FB-106 Users Guide

String Cache variable length strings that aren't stored in the static part of a row.

Index Caches most indexes can be cached individually.

5.10.5.2 Common Settings
Common for all caches associated with a table are two persistent settings:

1) Pre-loading the caches when the server starts.

2) Maintaining the cache content across transactions.

Pre-loading caches is disabled per default, but can be enabled via this SQL statement:

ALTER TABLE <table-name> SET PREPARE TRUE;

The cache will get pre-loaded to its maximum size during server start-up.

Maintaining the cache content across transaction is disabled per default, but can be enabled via this SQL
statement:

ALTER TABLE <table-name> SET PRESERVE TRUE;

Setting PRESERVE FALSE for a table is effectively the same as disabling the cache.

5.10.5.3 Row Cache
The row cache is adjusted via this SQL statement:

ALTER TABLE <table-name> SET CACHE(<min>, <max>, <percent>);

The <min> and <max> values are given as absolute row counts.

Caching the rows of a table 100%, but only up to a maximum of 250,000 rows:

ALTER TABLE <table-name> SET CACHE(0, 250000, 100);

Caching 1% of the rows in a table that has 3,000,000 rows:

Administration
Tuning FrontBase

Users Guide FB-107

ALTER TABLE <table-name> SET CACHE(0, 3000000, 1);

The default values are <min> = 2,000, <max> = 20,000, <percent> = 100 and they will apply if
PRESERVE TRUE is specified, but no explicit setting of the row cache is given.

5.10.5.4 String Cache
A string inserted into a table is stored either directly in the static part of the row or indirectly in a so-called
string (or spelling) table. The threshold that determines whether a string is stored indirectly, depends on
the data type:

CHARACTER If the maximum size given in the data type specification is less than or equal to 64,
inserted string values will be stored in the static part of the row. If the maximum size is
larger than 64, inserted string values are stored indirectly in the string table.

VARCHAR If the maximum size given in the data type specification is less than or equal to 32,
inserted string values will be stored in the static part of the row. If the maximum size is
larger than 32, inserted string values are stored indirectly in the string table.

Strings stored indirectly can be normalized, i.e. a given spelling is only stored once:

ALTER TABLE <table-name> SET COLUMN [NO] MATCH (<list-of-column-
names>);

Storing strings normalized can save space not only in the disk representation of the data, but also - and
probably even more importantly - in the string cache. If many identical strings are inserted into a table,
which could save a join operation in SELECTs, it will make sense to normalize the strings.

The string cache is adjusted via this SQL statement:

ALTER TABLE <table-name> SET STRING CACHE(<min>, <max>, <percent>);

The <min> and <max> values are measured in number of entries in the string table.

Caching the strings of a table 100%, but only up to a max. of 250,000 strings:

ALTER TABLE <table-name> SET STRING CACHE(0, 250000, 100);

Caching 1% of the strings in a table that has a total of 3,000,000 string table entries:

Administration
Tuning FrontBase

FB-108 Users Guide

ALTER TABLE <table-name> SET STRING CACHE(0, 3000000, 1);

The default values are <min> = 2,000, <max> = 20,000, <percent> = 80 and they will apply if
PRESERVE TRUE is specified, but no explicit setting of the string cache is given.

5.10.5.5 Index Caches
A table has either one index cache, covering all indexes defined on the table, or one cache per index. If the
so-called INDEX PRESERVE SPACE mode is in effect, only one cache for all indexes is created. If the
so-called INDEX PRESERVE TIME mode is in effect, one cache for each index is created.

INDEX PRESERVE SPACE the default and is a very disk space efficient mode, with the overhead
being less than 5 bytes per index per row, no matter the number of
columns in the index.

INDEX PRESERVE TIME efficient for larger tables. The overhead depends on the data types and
actual values of the columns in the index. If all columns in a SELECT are
found in an index, the actual rows are NOT loaded in full, which can
mean a significant savings in memory requirements and query execution
time. Once the SELECT characteristics of a given database is known,
dramatic performance gains can be achieved by defining indexes with
more columns than are normally used, simply to avoid loading actual
rows.

The index mode of a table can be switched via this SQL statement:

ALTER TABLE <table-name> SET INDEX PRESERVE TIME | SPACE;

If INDEX PRESERVE SPACE is in effect, the single index cache can be adjusted by specifying the name
of any index defined on the given table.

An index cache is adjusted via this SQL statement:

ALTER INDEX <index-name> SET CACHE(<min>, <max>, <percent>);

The <min> and <max> values are measured in number of disk blocks (a disk block is currently 512 bytes);

Caching an index of a table 100%, but only up to a maximum of 100,000 blocks:

ALTER INDEX <index-name> SET CACHE(0, 100000, 100);

Administration
Tuning FrontBase

Users Guide FB-109

Caching 50% of the blocks of an index, in a table, that occupies 200,000 blocks:

ALTER INDEX <index-name> SET CACHE(0, 200000, 50);

The default value for <percent> is 100. The default values for <min> and <max> will actually vary
depending on the size of the index when it is created, i.e. a way to adjust the settings of an index cache
optimally will be to drop the index and re-create it.

5.10.5.6 Frequently Asked Questions
Which cache will store BLOB and CLOB values?
Such values are typically large and are as such not cached in a table cache, but are either streamed directly
from the disk subsystem or the so-called RDD cache (described in Raw Device Driver (RDD) on page
111).

In what cases could it make sense to store only e.g. 10% of the rows in a cache?
If there are so many rows in the table that a 100% caching isn't practical and if the most "popular" queries
only return up to 10% of the rows (over and over again).

From this very large table, I only use SELECTs that has a value for the PRIMARY KEY in each
WHERE clause, should I worry about table caching?
No, at least not the row cache, fetching a row based on a PRIMARY KEY is typically very fast. You could
consider tuning the cache for the index that corresponds to the PRIMARY KEY, but this is seldom
needed. If enough memory is not an issue, table caching is always a way to make queries execute that
fraction of a second faster.

Why should I as a developer of a database driven application care about table caching?
Users of any type of application are an impatient bunch. They simply hate to wait for any action to
complete. Fetching data from a disk subsystem is inherently slow compared to how many instructions
even a slow CPU can perform per millisecond. To optimize the user experience of your application, you
need to make sure that waits are as few and short as possible. Table caching is a feature that easily can
become your friend and help you provide a good user experience.

5.10.5.7 Performance Indicators
The performance of the table caches can be inspected with the sql92 command line tool by issuing the
command:

SHOW CACHES [<schema-name>.] <table-name>;

Administration
Tuning FrontBase

FB-110 Users Guide

NOTE: The names may contain wild cards % _.

If <table-name> is omitted then all the preserved tables in the current schema are shown. The SHOW
CACHES command will print the following headings:

Name The name of the item. For row and dope caches it is the name of the table, for index caches
it is the name of the index. Please note that names beginning with _ (underscore) must be
enclosed in " (double quote) when used in other SQL statements.

Type Row caches are marked with an R, dope caches with a D, space optimized index caches
with an S and time optimized index caches with a T.

Items The total number of items in the structure. For a row cache it is the number of rows in the
table, for a dope cache it is the number of (unique) strings, and for an index it is the number
of pages used to implement the index.

Actual The number of items currently in the cache.

Byte size The number of bytes of RAM currently used for the cache.

Max Items The maximum number of items that the cache will hold. This number is calculated from the
total number of items in the structure, under the specified cache settings.

Byte Size The estimated number of bytes that a completely filled cache will use.

Lookups The number of times an item was accessed.

Hits The number of lookups where the item was found in the cache.

Hit Rate The relative number of lookups that was found in the cache and thus did not cause one or
more read operations. A lookup in the cache that loaded an item into a cache that was not
full is counted as a hit. This has the consequence that loading a cache will result in hits until
it is full. During loading the hit ratio will be 100%.

Refs (dope caches only) The dope stores unique strings, a string that occurs several times will be
stored only once. Refs gives the total number of references to strings in the dope cache.

Ratio (dope caches only) The ratio between the refs and the item count giving the average number
of references to one unique string. The larger the number, the more advantage is gained
from string normalization. If the ratio is close to 1, it may be worth considering turning off
the string normalization mechanism.

Administration
Tuning FrontBase

Users Guide FB-111

Apart from the listing for each cache, a total line is computed for the actual memory usage, which will
give an idea of how much memory the caches are using.

5.10.6 Raw Device Driver (RDD)
With today's fast computers, most performance issues in a database server are related to how fast you can
get data off the hard disk. One way to increase the performance in this area, is to bypass the host OS file
system. In FrontBase this is done through the deployment of the Raw Device Driver (RDD) module. RDD
even allows you to specify a raw partition to be used as data store. Additionally, RDD allows you to
specify the size of its combined write-through and read cache.

5.10.6.1 When should RDD be used?
RDD is typically used in combination with table caching so that smaller tables are cached 100%, while
larger tables are cached via the RDD cache. An example is an indexing solution. You would typically have
two smaller tables, WORDS and DOCUMENTS, with the third larger table being the relation table, HIT.
With FrontBase, you would cache WORDS and DOCUMENTS 100%, while letting the RDD manage the
HIT table. 100-300 MB of RDD cache memory might work well, depending on the size of the HIT table.

Adjusting RDD settings
RDD settings are specified when the database is created or started. FrontBaseManager lets you specify
RDD settings with its "Start Advanced" command. From the command-line, you specify RDD settings
when starting a FrontBase process.

RDD performance indicators
The performance of the RDD cache can be inspected with the sql92 command line tool by issuing the
command:

SHOW IO;

The following headings are listed:

Pages Used The number of pages currently in use

Pages Free The number of free pages in the cache

Pending pi The number of pages pending input

Pending po The number of pages pending output

Pending ps The number of pending synchronizations. This number measures the number of commits
that have been successful and have been written to the transaction log, but not to the
database file itself

Administration
Tuning FrontBase

FB-112 Users Guide

Read Count The number of read requests

Read Blocks The number of blocks read

Read Hits The relative number of blocks read from the cache

Read Waits The number of reads that had to wait for a block to have been read off the disk

Read Stalls The number of reads that had to wait for an RDD buffer to become available for reading
the data off the disk

Write Count The number of write requests

Write Blocks The number of blocks written

Write Stalls The number of times a write had to wait for an RDD buffer to become available

Device Read The actual number of reads from the disk

Device Write The actual number of writes to the disk

As the cache is statically allocated, the number of pages in the cache is constant and equal to the sum of
the free and used pages. The major performance indicator for the performance of the RDD cache is the hit
ratio. The higher ratio, the less disk activity. The hit ratio may be improved by allocating more memory to
the RDD or by growing the size of the table caches. The stalls should be 0; if they are not, it means that
the cache is filled with data pending output and it should be a good idea to make the cache bigger.

5.10.7 Improving Performance
We now have all the numbers for the various cache performances. But what are the indicators of
possibilities for improving the performance?

The first thought that springs to mind is to make all caches so large as to accommodate the complete
underlying data structure. It can be done on the table cache level and it can be done with the RDD cache.
If you start the server with an RDD cache that is bigger than the size of the underlying file, existing data
will be read exactly once, and never read again. Modified pages are just written to the file and kept in the
cache. You can also set the table caches to a size which will cache the complete table; this is more
efficient as the structure for the table is not rebuild each time the table is opened.

The above settings will be efficient for small databases on machines with sufficient RAM, but as soon as
the machine starts to page, the performance will drop dramatically and some more elaborate scheme must
be used to get the maximum performance of the given hardware configuration. In most cases, FrontBase

Administration
Tuning FrontBase

Users Guide FB-113

will perform better than the paging system as it will only have to re-read data while the paging system will
have to write a page and read a new one.

You should avoid having table caches for rarely used tables. You can determine this by looking at the
number of lookups in a given cache, and if it appears to be low, turn off preservation of the table. The
table data is then cached by the RDD cache.

You could also look for tables with a low hit ratio. A hit ratio less than 100% is only achieved for tables
with more items than the cache may accommodate. A very low hit ratio suggests that table scans are
performed, either because the complete table is returned, in which case the only thing to do is to increase
the size of the caches, or because an index is required for optimization of the queries performed against the
table, in which case the cause of the table scan must be isolated. A low hit ratio is typically less than 20%.

When you make the table caches more efficient by improving the hit ratio, you will also make the RDD
cache more efficient, as reads satisfied by a table cache do not go to the RDD cache, thus reading of non
preserved caches are more efficient. The cost is that the table caches use more RAM than the RDD cache.

5.10.8 Mac OS X and Raw Devices
FrontBase can operate directly on a raw disk device, thus bypassing the file system and the buffering
mechanisms. The use of raw devices enhances the performance and reliability of FrontBase as the
overhead of the file system is avoided and finer control over the disk is achieved.

5.10.8.1 Creating a Raw Device
Create a partition on the disk with the desired size and with the type FrontBaseFS and the name of the
database you want to create. The type must be FrontBaseFS but the name is mainly used by the pdisk and
similar programs. To create a partition on the disk, use the pdisk utility.

To make the raw data partition available to FrontBase, create a symbolic link:

ln -s /dev/disk<x>s<y> /Library/FrontBase/Databases/<database-
name>.fb

where <x> is the device number, and <y> is the slice number. The slice number is the partition number as
listed by the pdisk L command. The <database-name> is the name that must be used to access the
FrontBase database.

5.10.8.2 Creating a FrontBase Database on a Raw Device
To initialize a FrontBase database on a raw device the FrontBase server must be started with the -create
option that allows FrontBase to overwrite the contents of an existing file. Once the database has been

Administration
Tuning FrontBase

FB-114 Users Guide

initialized FrontBase may be used in the normal way. However it is suggested that the -rdd option is used
to specify a suitable raw device driver cache.

5.10.9 Memory Usage
There is one more statistical command that you may want to use:

SHOW MEMORY [ALL];

The following headings are listed:

Name There are a number of distinct memory zones: A fixed set of system related zones
(currently up to 7), a zone for each persistent table, and a zone for each client connection
(Agent)

VM The number of MB allocated to the zone

Small-Large The number of MB allocated for large pieces, and for small pieces of memory

Used-Free The number of MB for used small pieces and free small pieces. Typically the free small
pieces will be around 5-10 % of the space allocated for small pieces, when VM allocated
to small pieces is more than 10 MB

Used-Free (second time) The number of used and free memory pieces

Used-Free (third time) The average size (in bytes) of used and free small pieces

The total size of the IOZone is close to the size of the RDD. The size of used small pieces is typically
close to the total size of the caches within a few MB.

If the number of used small pieces is growing, the table caches have typically not been filled yet. If the
total allocation is close to physical RAM in the machine, it may be a good idea to review the cache
settings, or install more RAM.

5.10.10 Database Optimization
In FrontBase, the (smallest) unit of storing data is an IO block (see Storage Management on page 97). All
storage components of tables, etc, are stored in IO blocks. Optimally, the data of a storage component is
stored in consecutive IO blocks with as low addresses as possible. This is optimal both in the sense of the
time taken to read the data off the disk and in the sense of using no more disk space than necessary.

Over time, updates of tables may induce less optimal layout of the data associated with the table

Administration
Tuning FrontBase

Users Guide FB-115

(fragmentation). This occurs in two senses:

1) The data of a particular storage component is scattered over the disk zone in which it resides. This
leads to slower access to non-cached table data (including re-loading the caches when the server
starts).

2) A disk zone contains many free IO blocks, ie. the data in the disk zone is not densely allocated in a
partition. This leads to consumption of more disk space than strictly necessary..

Attempts to repair fragmentation in the first sense may actually lead to more fragmentation in the second
sense.

FrontBase offers two SQL statements for improving the situation when fragmentation in the first sense has
become a problem.

OPTIMIZE DATABASE;
OPTIMIZE DISK ZONE <disk zone name> | DEFAULT;

The first optimizes all disk zones defined by the database, and the second optimizes only the identified
disk zone.

It should be noted that the very optimal layout of an entire database is to be found immediately after a
restore of an up-to-date backup of the database.

Administration
Migration

FB-116 Users Guide

5.11 Migration
This section explains how to use FrontBase's import features to migrate databases from other vendors'
database servers.

Currently FrontBase has mechanisms for importing from the following:

• FileMaker on page 116
• MySQL on page 117
• Other import mechanisms are available via the enhanced import facility Enhanced Flat-File

Import and Export Functions on page 88

5.11.1 FileMaker
The FileMaker Pro migration tool lets you move a FileMaker Pro database to FrontBase. It has two key
restrictions. First, as FrontBase is a relational database server and not a front-end tool, only your
FileMaker Pro tables will be migrated. Second, SQL 92 has no provision for calculated columns, so they
can't be moved over to FrontBase if you have them in a FileMaker Pro database, however they can be
implemented in VIEWS.

Currently, you'll need to download the FileMaker Pro migration tool separately. It is only available for the
Mac OS X platform. The tool is available from the Download section of the FrontBase website.

When you download and decompress the FileMaker Pro migration tool, you'll find the following items:

FM2FB.app This is the main application build for Mac OS X Server. It can be used right away, or
it can be moved to one of the Application folders. The application requires the
FrontBase client frameworks to run. These frameworks are installed when you install
the FrontBase package.

MetaDumper.fp3 This FileMaker script extracts information from FileMaker files. This script should
be moved to a place where FileMaker can access it. It works with both Mac OS and
Windows versions of FileMaker. In Mac OS, you may not be able just to double-click
the script file. Instead, start FileMaker and open it using the "Open..." menu item.

README An older "read me" document.

To access the documentation on how to use FM2FB and the MetaDumper script, start FM2FB.app and
choose "FM2FB Help" from the "Help" menu. This will open the HTML documentation in your web
browser. The HTML files are embedded in the application wrapper.

Administration
Migration

Users Guide FB-117

5.11.2 MySQL
The MySQL migration tool lets you move a MySQL database to FrontBase using JDBC drivers for both
databases. It has one key limitation. It cannot handle MySQL with enum or set column types. The MySQL
migration tool requires a Java virtual machine version 1.2 or higher.

Currently, you'll need to download the MySQL migration tool separately. The tool is available from the
downloads section of the FrontBase website (www.frontbase.com). Eventually, it will be rolled into the
FrontBase downloadable for every platform.

You will need to acquire a JDBC driver for MySQL. Simply install the MySQL JDBC driver in the
directory containing the rest of the MySQL migration tool.

To run the MySQL migration tool, change your working directory to the directory containing the tool and
execute the following from the command line:

java -cp mysql_2_comp.jar:frontbasejdbc.jar:MySQL2FB.jar MySQL2FB

It will ask you for some information to complete the migration:

Source The source field is the location and name of the MySQL database to transfer. Input must
have the following format: <database-name>@<host-name>.

Destination The destination field is the desired location and name of the FrontBase database. There
has to be a running version of FrontBase 2.0 on the specified host. Input must have the
following format: <database-name>@<host-name>.

Username The username needed to log on to the MySQL database.

Password The password for the MySQL user name.

NOTE: The import filter is very unforgiving about incorrectly formatted input. Please experiment with
a test database before working with a production database!

Administration
Troubleshooting

FB-118 Users Guide

5.12 Troubleshooting

5.12.1 Logging SQL Statements
FrontBase allows you to enable logging of all SQL statements sent to and executed by the server. This in
turn allows for not only a powerful stress test tool (ClientSimulator), but also a very important debugging
vehicle. Last, but not least, the logging also provides you with a textual representation of the state changes
the various clients have imposed on the server.

SQL logging may be turned on when starting the server:

<FB home>/FrontBase/bin/FrontBase -logSQL [<other-options>]
<database-name> &

SQL logging can also be controlled in a more dynamic way by means of a regular SQL statement:

SET WRITE SQL {TRUE | FALSE} [GLOBAL];

The various combinations of this statement syntax are described below.

SET WRITE SQL TRUE GLOBAL;

Will turn on logging on a global basis, i.e. create the log file if it doesn't exist and turn on logging for all
new agent connections. Please note that existing connections will NOT get logging turned on.

SET WRITE SQL FALSE GLOBAL;

Will turn off logging for all existing and new agent connections.

Please note that the actual log file will not get closed. This implies that if logging is later on turned on
again, the log file does NOT change location (e.g. in case the LogFiles directory was created in between
turn-off/turn-on).

SET WRITE SQL TRUE;

Will turn on logging for the executing agent connection, but only so if logging has first been turned on
using the GLOBAL option.

Administration
Troubleshooting

Users Guide FB-119

SET WRITE SQL FALSE;

Will turn off logging for the executing agent connection.

Please observe that when enabling the logging, the actual file is not truncated, i.e. new log entries are
appended. Turning on logging, even globally, will not span a server stop/restart cycle.

5.12.2 Understanding the SQL Log File
The .sql log file that is maintained by the FrontBase server is instrumented with certain information that
will allow for a realistic replay of the log file. Information pertaining to timing measurements is also
included. The instrumentation is in the form of SQL comments that are formatted in a particular way.

These instrumentation comments are found in a FrontBase SQL log:

--0 <connection id><timestamp><encryption key id>
Connection created

--1 <connection id><session id><timestamp> "<user name>" "<session name>"
Session created

--2 <connection id><session id><timestamp><no of bytes in the following SQL statement>
Execute SQL

--3 <connection id><session id><timestamp>
Session terminated

--4 <connection id><session id><timestamp><no of bytes in the following SQL statement>
Execute SQL, one shot auto COMMIT

--5 <connection id> <timestamp>
Connection terminated

--6 <connection id><session id><timestamp> "<result OK> <error count>"
End of SQL execution

--7 <connection id><session id><timestamp>
Start of result set fetch

--8 <connection id><session id><timestamp> "<number of rows returned>"
End of result set fetch

--9 <connection id><session id><timestamp><exception>

Administration
Troubleshooting

FB-120 Users Guide

Exception

--A <connection id><session id><timestamp>
Auto COMMIT OK

--B <connection id><session id><timestamp>
Auto COMMIT failed

--C <connection id><session id><timestamp><statement handle>
PREPARE statement

--D <connection id><session id><timestamp><length>
Execute SQL, return batch

--E <connection id><session id><timestamp><length>
Execute SQL, one shot auto COMMMIT, return batch

5.12.3 Location of the SQL Log File
The log file will per default get created as

<FB home>/FrontBase/Databases/<database-name>.fb.sql

This location can be changed by creating a directory named LogFiles in the FrontBase installation
directory:

mkdir <FB home>/FrontBase/LogFiles

Any servers with an open log file will NOT pick up this change of location until they have been stopped
and restarted.

Please note that the LogFiles directory can actually be a soft (symbolic) link to a directory residing
somewhere else in the file system.

5.12.4 New SQL Log File
SQL log files can get pretty large over time and it can be beneficial to split the log over a number of files.
The server can be directed to 1) rename the existing log file and 2) create a new log file:

SWITCH TO NEW SQL LOG;

Administration
Troubleshooting

Users Guide FB-121

The name of the renamed log file will stay the same except that a timestamp is added as a suffix:

<database-name>.fb.sql.yyyymmddhhmmss

The name of the new log file will be the same as before the switch was made, i.e. no change of directory.

FB-123 Users Guide

6 FrontBaseManager
FrontBaseManager is a Mac OS X application that lets you start, stop, monitor, create, remove, and
generally manage every aspect of your FrontBase database on the Mac OS. FrontBaseManager gives you
a clean graphical interface to perform all your database maintenance, create tables and views, retrieve data
from your database and upload data to your database, all without the need for SQL programming.

This chapter has the following sections:

• Monitoring and Managing Databases on page 124
• Connection Window on page 138
• SQL Interpreter on page 138
• Database on page 140
• Session on page 141
• Usage on page 142
• License on page 143
• User on page 145
• Schema on page 146
• Schema Objects on page 147
• Table Cache on page 165
• Black & White List on page 167
• Backup on page 169
• Odds-n-Ends on page 169

FrontBaseManager
Monitoring and Managing Databases

FB-124 Users Guide

• Preferences on page 170
• File Import on page 171
• SQL Log on page 175
• Known issues on page 176

6.1 Monitoring and Managing Databases
FrontBaseManager lets you monitor and control the state of FrontBase servers, i.e. whether they are
running or stopped. When the FrontBaseManager is started, the following Monitored Databases window
appears:

This window shows monitored databases as icons indicating the state of the database together with the
name of the database and the host computer on which the database is located. The example above shows
the databases Movies and Test on host localhost. The Movies database is running and the Test database is
stopped. Alternately, you can switch to List View using the view buttons. The corresponding List View
window looks like this:

FrontBaseManager will remember whether you last used Icon View or List View.

6.1.1 Creating Databases
The New and Delete buttons will allow you to create a new database or delete an existing, selected
database. The Delete button will not be enabled unless you have selected a stopped database. When you
click Delete, FrontBaseManager will ask you to confirm that you want to delete the database.

FrontBaseManager
Monitoring and Managing Databases

Users Guide FB-125

When you click New, FrontBaseManager will present you with a dialog box asking which host you want
to create the database on and what to name the database. That window looks like this:

Using the FileNew Database Advanced option, you can create a new database with additional options.
For detailed explanation of all the available options, please see “FrontBase for the Developer” on page
197.

A few options are discussed here:

Create Unconditionally A new database is unconditionally created, overwriting an existing database
with the same name (if it existed). Please use this option with caution!

FrontBaseManager
Monitoring and Managing Databases

FB-126 Users Guide

Row Level Privileges FrontBase offers a unique feature called Row Level Privileges that allows you
to assign privileges, like on the files in a Unix file system, to each individual
row in the tables of a database. The Row Level Privileges checkbox turns this
feature on for the database when it is created. Refer to the “Row Level
Privileges” on page 224 for more information on how to use this feature.

Port Specifying a port directs the FrontBase database to listen on a specific port
number.

Raw Device Driver FrontBase offers a very advanced write-through cache mechanism that also
supports use of a raw device (partition) as data storage. If you'd like to use this
option (and your license permits it), click the Raw Device Driver and specify a
size for this cache.

Local Connections Only By specifying this option, a FrontBase database will only accept connections
from clients running on the same computer as the database. The default is to
accept connections from networked as well as local clients.

Log SQL By specifying this option, a FrontBase database will log all the received SQL
statements in a file. The file is created in the Databases directory of a
FrontBase installation and is named <database-name>.fb.sql. (The default is to
not log the SQL statements.) For example, you can "Log SQL" on a database
named Movies and (on Mac OS X) your log would be in
/Library/FrontBase/Databases/Movies.fb.log.

Replication Options In the replication scheme offered by FrontBase, you can have one master
database into which all updates must take place. Any number of read-only
replication clients can be added. You can specify whether this new database
should be started as a standalone server, a replication master or a replication
client via the New Database Advanced window.

6.1.2 Restoring from Backup
Restoring from backup is easy with FrontBaseManager. There are two cases where you might want to
restore a database backup. One, you accidentally deleted your database entirely and need to restore it from
backup. The second case would be that you still have the database but just want to overwrite the current
contents with the backup. So, if you already have a database, be sure it is stopped and then choose
FileRestore Database.

FrontBaseManager
Monitoring and Managing Databases

Users Guide FB-127

To restore a backup if the database has been deleted, select the host where the database used to be and
then type in the name of the database in the database text field. Be sure the Rollforward Transactions
checkbox is checked if you would like to roll forward any transactions saved in the transaction log since
the latest backup. Click the Restore button and your database will be restored, added to your monitored
databases view, and started.

6.1.3 Monitoring
The FrontBaseManager only allows you to actively manage those databases that it is currently monitoring.
So, the database icons or list items that you see are only those databases it is monitoring. To add existing
databases to the monitor view, click the Monitor button on the toolbar or choose DatabaseMonitor
from the menu. The following panel appears:

FrontBaseManager
Monitoring and Managing Databases

FB-128 Users Guide

The left column of the browser shows all currently monitored hosts. The right column shows all existing
but not yet monitored databases on the selected host. To monitor databases on a not yet shown host,
simply enter the host name in the text field below the browser and press Return. To add a database to the
list of monitored databases, select the database in the browser and click the OK button. You can also add
multiple databases at once. You can remove a database from the monitored databases list by selecting it
and clicking De-monitor or by selecting it and choosing DatabaseStop Monitoring.

This panel also allows you to remove a monitored host from the host list. When you have selected a host,
just click the Minus button.

6.1.4 Starting Databases
To start a monitored database that is not yet running, select it in the monitor view and click Start or
choose DatabaseStart or DatabaseStart Advanced. Clicking Start or choosing DatabaseStart
starts the database immediately. Selecting DatabaseStart Advanced brings up a panel allowing you to
specify options before actually starting the database.

FrontBaseManager
Monitoring and Managing Databases

Users Guide FB-129

You can select the start options on this window. The options are explained below:

Port Specifying a port directs the FrontBase database to use a specific port number.

Raw Device Driver FrontBase offers a very advanced write-through cache mechanism that also
supports use of a raw device (partition) as data storage. If you'd like to use this
option (and your license permits it), click the Raw Device Driver and specify a
size for this cache.

Local Connections Only By specifying this option, a FrontBase database will only accept connections
from clients running on the same computer as the database. (The default is to
accept connections from networked as well as local clients.)

Log SQL By specifying this option, a FrontBase database will log all the received SQL
statements in a file. The file is created in the Databases directory of a
FrontBase installation and is named <database-name>.fb.sql. (The default is to
not log the SQL statements.) For example, you can "Log SQL" on a database
named Movies and (on Mac OS X) your log would be in
/Library/FrontBase/Databases/Movies.fb.log.

Replication Options In the replication scheme offered by FrontBase, you can have one master
database into which all updates must take place. Any number of read-only
replication clients can be added. You can specify whether this new database
should be started as a standalone server, a replication master or a replication
client via the New Database Advanced window.

FrontBaseManager
Monitoring and Managing Databases

FB-130 Users Guide

6.1.5 Stopping Databases
To stop a monitored database that is running, select it in the monitor view and click Stop or choose
DatabaseStop. Stopping a database needs to be done by the user _system. If this user has a password
and/or there is a database password you will be asked to provide the password(s).

6.1.6 Showing Database Start Options
You can see the options that were used last time a database was started by choosing DatabaseShow
Options:

6.1.7 Replication Management
FrontBaseManager allows you to set up and manage a replication setup of databases. To open the
Replication Management pane, choose ToolsReplication Management. Just as always when you select a
host you will see the list of known databases on that host, in this case localhost has been chosen.

FrontBaseManager
Monitoring and Managing Databases

Users Guide FB-131

If you select a database that is not a replication master a message is displayed.

To start the replicator, you just click the Start Replicator button. This will set up the database as a
replication master. You may need to make a refresh to see the result.

FrontBaseManager
Monitoring and Managing Databases

FB-132 Users Guide

You can now stop the replicator or add clients. To add a client, just click the Add Client button.

FrontBaseManager
Monitoring and Managing Databases

Users Guide FB-133

By selecting a client you can remove it.

6.1.8 Cluster Management
FrontBaseManager allows you to set up and manage a cluster of databases. To open the Cluster
Management pane, choose ToolsCluster Management. Just as always when you select a host you will
see the list of known databases on that host, in this case localhost has been chosen.

FrontBaseManager
Monitoring and Managing Databases

FB-134 Users Guide

If you select a database that is not a member of a cluster a message is displayed.

To create a cluster, you just click the Create Cluster button. This will set up the cluster and start the
database if it is not running.

FrontBaseManager
Monitoring and Managing Databases

Users Guide FB-135

You can now add another member to the cluster by clicking the Add Member button.

FrontBaseManager
Monitoring and Managing Databases

FB-136 Users Guide

By selecting one of the members you are able to start, stop, or remove the member.

6.1.9 Connecting to the Database
Once you have a running database, you can connect to the database either by selecting the database and
clicking the Connect button, or by simply double-clicking on the database icon. This will bring up the
following dialog box:

This dialog box allows you to select a user from a list of usernames that have been used at previous
connects or type in a new username. When you connect to the database for the first time (directly after
creating it), only superuser _SYSTEM is offered. If a connection can be established, the main Connection
window appears. It also allows you to specify the user password and the database password, if any.

If you want to connect to a database that is not in the monitor window you can do so by choosing
FileOpen Database. You will then get the following dialog box:

FrontBaseManager
Monitoring and Managing Databases

Users Guide FB-137

This window shows you the database you chose to connect to and also allows you to change your
selection. It allows you to connect using either the database name or TCP port. Finally, it allows you to
specify the user and password and the DB password, if any. You can select a user from a list of usernames
that have been used at previous connects or type in a new username. When you connect to the database for
the first time (directly after creating it), only superuser _SYSTEM is offered. If a connection can be
established, the main Connection window appears.

FrontBaseManager
Connection Window

FB-138 Users Guide

6.2 Connection Window

The Connection Window is FrontBaseManager's main window. This pane gives you access to most of the
functionality that FrontBaseManager offers. So let's first examine the elements on the main connection
window and then we'll delve into each separate switched view of the connection pane.

The Connection window title bar contains the name of the database, the host on which it is running, and
the connection's user. At the bottom-left corner of the connection pane you can see the transaction
settings, always present to remind you of your current transaction settings. These transaction settings can
be changed through the Session pane. By default, a drawer extends below the Connection window
showing the log of all SQL statements sent to the database within this connection. (This drawer can be
hidden by selecting ViewHide SQL Log.)

6.2.1 SQL Interpreter
The Connection window starts with the SQL Interpreter pane selected as the sub-view. The SQL
Interpreter allows you to send direct SQL to the database server. To do so, just click in the lower text area,
type in your SQL and click Execute SQL. As the message below the text input area states, Command-
Return will also execute the SQL. You will notice that as you type in SQL, the SQL Interpreter highlights
SQL 92 reserved keywords in blue. This helps you debug your SQL statements. As you send SQL to the
server, a history of SQL statements is kept for you in the history area. By default, the history list is kept
unique. That is, if you issue "select * from foo;" then some other SQL statement, then "select * from foo;"

FrontBaseManager
Connection Window

Users Guide FB-139

again, you will not get a second "select * from foo;" in the history. Instead, the SQL history will move the
"select * from foo;" already in the history to the bottom of the history list. You can turn this SQL uniquing
feature off in the Preferences if you prefer to see every SQL statement in the history.

You can also execute files of SQL with the SQL Interpreter. There are two ways to do so. You can click
the Execute File button to select a file to execute or you can just drag-and-drop the file onto the text entry
area. As you drag the file over, a grayed out "script <file-name>" will appear in the text area. Then, when
you drop the file into the text area, "script <filename>" will actually be executed.

You can easily re-execute commands from your history by clicking on the history line item and then
clicking Execute SQL or by simply double-clicking the history line.

It's easy to change your transaction settings from the SQL Interpreter as well. Just right-click in the SQL
entry area and you will be presented with a context menu giving you the option to Disable/ Enable Auto
Commit and change to a number of useful transaction setting configurations.

FrontBaseManager
Connection Window

FB-140 Users Guide

6.2.2 Database

The Database pane contains information about the database. Most of the items on this screen are self-
explanatory. The server version is the current database server version number. The database version is the
version of the server that created this database initially. You can change the database password or stop the
database on this panel with the buttons at the bottom of the panel.

FrontBaseManager
Connection Window

Users Guide FB-141

6.2.3 Session

The Session pane contains information about this session's connection. It shows the current user, current
schema, isolation level, locking discipline, updatability, and commit mode. There is an Edit Settings
button that allows you to edit your current schema or any of your transaction settings.

FrontBaseManager
Connection Window

FB-142 Users Guide

6.2.4 Usage

The Usage pane shows all the connections active to your currently connected database. It shows
connection information, transaction settings, and the connection duration. The bottom pane shows the
selected transaction's currently running SQL. You can use the +/- button in the upper right to filter the list
of informational fields shown. The settings are saved so that you will see the same information the next
time you show the usage panel, and in the same order.

FrontBaseManager
Connection Window

Users Guide FB-143

6.2.5 License

FrontBaseManager
Connection Window

FB-144 Users Guide

The License pane shows your current licensing information. It shows the verification mechanism (MAC
Address or IP Address), the actual address it's verifying against, the version, the license type, and the
expiration date. It then also shows all the features and that feature's licensed state (Licensed or
Unlicensed). To change license information, click on ToolsLicense Management, specify the host, and
click the Edit License button.

You can then specify the License key and the Check key you received from FrontBase. Click Set License
and the new license will go into effect after you restart the server. You must restart the server for the new
license to go into effect!

FrontBaseManager
Connection Window

Users Guide FB-145

6.2.6 User

The User pane gives you the tools to add, drop, and edit users.

To create a new user, click the New User button and specify a username, schema option, and password. If
you specify Create Default Schema, FrontBaseManager will create a schema for that user named the same
as the username. (A new user named "Bob" will have a new schema named "Bob" created and assigned as
his default schema.) Otherwise, you can specify a user's default schema to be any of the other schemas
defined on the database or to have no default schema.

To drop a user, select the user and click Drop User. A sheet will come down asking whether to
Drop Cascade or Drop Restrict. You can only choose Drop Restrict if the user does not own any schemas
or schema objects. Choosing Drop Cascade will drop the user and associated schemas and schema
objects.

Editing a user allows you to change the user's default schema and password.

FrontBaseManager
Connection Window

FB-146 Users Guide

6.2.7 Schema

The schema pane allows you to add or drop schema. To create a new schema, click the New Schema
button and specify a schema name and owner. To drop a schema, select a schema that the logged-in user
owns and click the Drop Schema button. If the schema contains schema objects, you must Drop Cascade
to delete all the associated schema objects as well. If the schema is empty, you can just Drop Restrict.

FrontBaseManager
Connection Window

Users Guide FB-147

6.2.8 Schema Objects

The schema objects browser contains some of the most powerful FrontBaseManager functionality. It
allows you to create, delete, view, and modify the stuff you really care about -- your tables and data. This
pane is organized like a browser or Finder. You first select a schema, then an object type, then you'll be
presented with a list of the schema objects for you to create, delete, open their content, or open their
definition.

6.2.9 New Schema Object
There are 6 different schema objects FrontBaseManager allows you to manipulate -- Tables, Views,
Procedures, Functions, Domains, and Collations. FrontBaseManager provides an intuitive view to create a
new object of each type. Let's first look at the New Table editor.

6.2.9.1 New Table
To get there, select the schema where you'd like to create the table, then select "Tables". The New Table
button will be enabled. Click the New Table button and you'll be presented with a view like this one:

FrontBaseManager
Connection Window

FB-148 Users Guide

You can specify a table name and then click the + button at the bottom left of the window to set up a
column. You will notice that when you specify a table name and add a column, the SQL that would be
executed is displayed in the lower pane. This helps ensure that you know exactly what's going to happen
for a given table setup and teaches you a little more SQL 92 in the process. You'll notice that as you
change the data type or any other attributes in the upper pane, the SQL in the lower pane changes to show
what SQL would be executed given the new table definition. The labels, from left to right, are primary key
(If a key appears, this column is a primary key), allows null (If an indicator appears, this column allows
null), column name, column data type, domain, width, precision, scale, default value, whether normalized,
and name of collation on the column. It is important to note that no actual create table SQL will get sent to
the server until you press the Create button. This gives you a flexible canvas for defining exactly how you
want to design your table before it's actually created.

FrontBaseManager
Connection Window

Users Guide FB-149

6.2.9.2 New View

The New View editor is a bit more free-form than the table editor. It allows you to specify the name of the
view, pre-populates the schema name, gives you a group of radio buttons to specify the check option (an
advanced feature defined in the SQL 92 standard), and the view definition. For example, to create a view
containing columns named c0 and c1 from table t0 where c1 (an int column) is greater than 3, input the
following into the definition:

SELECT "c0", "c1" FROM "t0" WHERE "c1" > 3

6.2.9.3 New Procedures and New Functions

FrontBaseManager
Connection Window

FB-150 Users Guide

Both the New Procedure and the New Function windows are quite simple. When you navigate in the
schema objects browser to the Procedures or Functions item within a defined schema, the New Function
or New Procedure button will become enabled. When you click the button, the resulting window will
allow you to define the function or procedure.

6.2.9.4 New Domain
To get there, select the schema where you'd like to create the domain, then select "Domains". The
New Domain button will be enabled. Click the New Domain button and you'll be presented with a view
like this one:

You must specify the name of the domain and the data type including possible width, precision and scale.
If you need to, you can also specify a default value.

6.2.9.5 New Collation

Clicking the New Collation button in the Schema Objects browser brings up a small window that allows
you to specify the collation name and the filename of the actual collation file on the server. (The
Collations are all stored in /Library/FrontBase/Collations so you do not need to specify a path.)

FrontBaseManager
Connection Window

Users Guide FB-151

6.2.10 Open Schema Object Content

The Open Content button is enabled when you select a defined table or view. This window allows you to
view content and insert, delete, and update rows. When the window first comes up, it shows all the rows
(up to your fetch limit) in the table. You can qualify the rows fetched (and shown) by specifying a where
clause in the upper pane and clicking the Fetch button. Specify only the part of the SQL statement you
would put after a 'where'. For example, "Budget > 1000000" would be a valid "where clause". To delete
rows, simply select a row or number of rows and click the Delete button. If the schema object is updatable
(some views are not), the rows will be deleted. Inserting and updating rows happens by pulling down a
sheet from the window that allows you to specify values for any of the columns you'd like populated.

6.2.11 Inserting and Updating Rows

FrontBaseManager
Connection Window

FB-152 Users Guide

The Row Editor sheet contains a table view with columns for table column name, data type, value, and an
allows null indicator. When entering values, enter just the actual content. For example, the SQL to insert a
row into the table Studio containing the columns Budget, Name and Studio_Id would look something like:

INSERT INTO "studio" ("Budget", “Name”, “Studio_ID”) VALUES
(1000000, ‘Nordisk Film’, 100);

When inserting a row, the OK button will be disabled if you have not specified a value for a column that
does not allow null.

6.2.12 BLOB and CLOB handling
FrontBaseManager provides an intuitive user interface to upload and download large objects. If a table or
view has a column with data type BLOB or CLOB, you cannot edit these values directly in the content
editor. However, you can specify a file containing content that you would like in the CLOB/BLOB
column and FrontBaseManager will read in the file and set the column to that value.

If a CLOB/BLOB column contains content, it will display a hyperlink in the content browser to download
that content to a file on your local file system. Clicking on the Download link will bring up a Save File
dialog, asking you for a filename in which to save the large object data.

FrontBaseManager
Connection Window

Users Guide FB-153

6.2.13 Open Schema Object Definition
The Schema Object definition window gives you information about the schema object itself. The view,
procedure, and function definition windows give you the definition information (which you specified
when you created the schema object) and allow you to change the privileges on the schema object. The
collation definition window gives the name of the collation, the schema name, the type, and the external
name. The table definition window gives you quite a bit more information that we'll look at in detail.

6.2.13.1 Table Definition Window
The table definition window gives you access to a great deal of information about the table. Let's go
through each of the panes, one at a time. Note that to alter table columns, primary keys, foreign keys, etc.,
you must set your transaction settings to Serializable, Pessimistic. You can change your transaction
settings through the Session pane on the Connection window or by right clicking in the SQL Interpreter.

FrontBaseManager
Connection Window

FB-154 Users Guide

6.2.13.2 Column Definition Pane

Initially columns are ordered as retrieved from the database. You can change the order by clicking at the
header of the Name column.

The Column definition pane of the table definition window gives you a chance to drop or edit columns in
a defined table. To drop a column, simply select the column and click the Drop button. Note that you
cannot drop all the columns in the table because a table must have at least one column. You can edit the
table columns by clicking the edit button and proceed to set primary key and not null constraints, column
names, data types, widths, precision, scale, set default values, specify a column to be normalized, and
specify a collation on a column. Notice that as you're altering the table in the column definition pane, the
SQL that will be executed is generated in the lower pane. Click Update to actually send the SQL to the
server.

FrontBaseManager
Connection Window

Users Guide FB-155

6.2.13.3 Primary Key Pane

The Primary Key definition pane of the table definition window lets you drop and create primary key
constraints. To create a primary key constraint, click the Create button to bring up the primary key
creation sheet.

From here you can specify a constraint name (optional), set whether the constraint is deferrable and, if it is
deferrable, whether it is initially deferred. You can then specify which columns should participate in the

FrontBaseManager
Connection Window

FB-156 Users Guide

primary key constraint and click the Create Primary Key Constraint button. If your transaction settings
were correct, the sheet will retract and you'll have a new primary key constraint.

To drop the primary key constraint, simply click the Drop button.

6.2.13.4 Foreign Key Pane

The Foreign Key definition pane of the table definition window lets you drop and create foreign key
constraints. To create a foreign key constraint, click the Create button to bring up the foreign key creation
sheet.

FrontBaseManager
Connection Window

Users Guide FB-157

This sheet may look daunting but the only two things you really have to specify are the source column(s)
(via the "Source Columns" browser) and the destination columns (via the browser to the right of the
"Source Columns" browser). The number of source columns and destination columns must, of course,
match. The other options (Deferrable, Check Time, Update Rule, Match Option, Delete Rule) can be
changed if you want foreign key behavior other than the default behavior.

To drop a foreign key constraint, simply select the constraint and click the Drop button.

FrontBaseManager
Connection Window

FB-158 Users Guide

6.2.13.5 Unique Pane

The Unique definition pane of the table definition window presents an interface to create and drop unique
constraints. To create a unique constraint, click the Create button to bring up the Unique creation sheet.

From here you can specify a (optional) constraint name, set whether the constraint is deferrable and, if it is
deferrable, whether it is initially deferred. You can then specify which columns should participate in the
unique constraint and click the Create Unique Constraint button.

FrontBaseManager
Connection Window

Users Guide FB-159

To drop a unique constraint, simply select the constraint and click the Drop button.

6.2.13.6 Check Pane

The Check definition pane of the table definition window allows you to create and drop check constraints.
To create a check constraint, click the Create button to bring up the Check creation sheet.

FrontBaseManager
Connection Window

FB-160 Users Guide

From here you can specify a (optional) constraint name, set whether the constraint is deferrable and, if it is
deferrable, whether it is initially deferred. You can then specify a free-form check constraints in the
definition area. (such as "Budget > 1000000" for an int column for which you want to enforce only values
> 3). You can then click the Create Check Constraint to create the check constraint.

To drop a check constraint, simply select the constraint and click the Drop button.

6.2.13.7 Index Pane

The Index definition pane shows all the indexes you currently have in place, allows you to set the index
mode, allows you to drop existing indexes, and create new indexes.

FrontBaseManager
Connection Window

Users Guide FB-161

To set the index mode, click the Set Index Mode button and you'll be presented with the choice of either
"Preserve Space" or "Preserve Time". Make your choice, click Set Index Mode and FrontBaseManager
will change your index mode. You must be in Serializable, Pessimistic mode to change the index settings.

To drop an index, select the index and click Drop. You must be in Serializable, Pessimistic mode to drop
an index.

FrontBaseManager
Connection Window

FB-162 Users Guide

To create an index, click the Create button. When this sheet comes down, you can specify an (optional)
index name and then specify which columns should participate in the index and click the Create Index
button. You must be in Serializable, Pessimistic mode to create an index.

6.2.13.8 Full Text Index

The full text index pane allows you create and drop full text indexes. To create a full text index, click the
Create button to bring down the full text index creation sheet. For full text indexes, you must specify an
index name. Next, specify a column name. For a description of all the different full text index options, see
the LookSee documentation. (LookSee is the full text-indexing engine.) After specifying the options, click
Create to create the full text index.

To drop a full text index, simply select the index and click the Drop button.

FrontBaseManager
Connection Window

Users Guide FB-163

6.2.13.9 Privileges

The Privileges pane shows you the currently granted privileges in the database. The columns are Grantee,
Grantor, Type, and Grantable. Grantable means whether the Grantee can grant the privilege to other users.
To grant privileges, make sure the connection's user has grant privileges and click the Grant button.

FrontBaseManager
Connection Window

FB-164 Users Guide

You'll see all the database users in browser on the left. Select the grantee, check all the privilege types
you'd like to grant, select whether you'd like to grant without the grant option (the default) or with the
grant option, and click the Grant button.

To revoke privileges, select the privileges you'd like to revoke and click the Revoke button.

You'll be given a choice to either revoke the entire privilege or revoke the grant option only (so that the
user cannot grant the privilege to other users). If you revoke restrict, it will only revoke the privileges
you've selected. If you revoke cascade, it will revoke the privileges you selected and all the privileges that
have been granted using that privilege. (If BOB grants privileges to JIM and JIM grants privileges to SUE,
revoking BOB's privilege cascade will revoke BOB's, JIM's, and SUE's privileges.)

FrontBaseManager
Connection Window

Users Guide FB-165

6.2.13.10 SQL

This pane simply shows the SQL that generated the table.

6.2.14 Table Cache

FrontBaseManager
Connection Window

FB-166 Users Guide

The Table Cache pane contains information about the table cache. The table cache can be used to fine-
tune table caching. All the tables in the selected schema are shown on this panel. The parameters are:

Lower The minimum number of rows of the table to be kept in the cache

Upper The maximum number of rows of the table to be kept in the cache

% The percentage of the total number of rows to be kept in the cache

Persistent If Yes, the cache is kept across transactions. Otherwise, the cache is flushed after each
COMMIT or ROLLBACK.

Preload If Yes, all rows in the table will be loaded into the cache when the server is started.
Otherwise, the rows are loaded upon the first reference to them.

To change any of these settings, select the table you want to change and click the Edit button.

FrontBaseManager
Connection Window

Users Guide FB-167

6.2.15 Black & White List

The pane contains information about the black and white list. When a client connects to a FrontBase
server, its IP address is checked against the black and white list to see if the client is allowed to connect.
For an entry in the black and white list, the IP address of the client is AND'ed with the Netmask and the
result is compared with the IP address in the white and black list. If a match is found and the entry is a
white listing, the client is allowed to connect. Otherwise, the connection is refused. If no match is found,
the connection is refused. If a YES is entered in the secure field, the client is requested to use encryption
for all further communication with the server.

Black and white list rules are evaluated in the order of decreasing Netmask value. As soon as a match is
found, evaluation stops and the rule is applied.

To add a new filter rule, click the New Filter Rule button.

FrontBaseManager
Connection Window

FB-168 Users Guide

Enter the netmask and IP address that describes the host or network you'd like to white list or black list.
Select White List or Black List from the radio button and click the Secure checkbox if you'd like the
server to request that the client use encryption for their communication. Click the Create button and you'll
have a new list entry.

To drop a filter rule, simply highlight the rule you'd like dropped and click the Drop Filter Rule button.

To edit a filter rule, highlight the rule you'd like to edit and click the Edit Filter Rule button. A sheet will
come down allowing you to edit the filter rule. After you change the values you'd like to change, click
Update to save your changes.

Here are some examples of how to use the Black & White List:

IP Netmask White Listed Secure

24.5.126.145 255.255.255.255 NO NO

000.000.000.000 000.000.000.000 YES NO

This would lock out the single IP at 24.5.126.145 and would allow connections from every other IP.

IP Netmask White Listed Secure

FrontBaseManager
Odds-n-Ends

Users Guide FB-169

24.5.126.0 255.255.255.0 YES NO

24.5.127.0 255.255.255.0 YES NO

128.0.64.2 255.255.255.255 YES NO

This would allow access from two class C network (24.5.126.0-255 and 24.5.127.0-255) and one single IP
address (128.0.64.2) and would refuse connection to every other IP.

6.2.16 Backup

The Backup pane simply has a Perform Full Backup button on it. If you click the button, a sheet will
come down with a button to Begin Backup. It also has a text field if you want to specify a backup file and
a checkbox (defaulted to checked) that will instruct the server to compress the backup file.

6.3 Odds-n-Ends
Not all FrontBaseManager features are accessible through the main Connection window panes. Some are
accessed from the pull-down menus or keyboard shortcuts. This section details those features:

FrontBaseManager
Odds-n-Ends

FB-170 Users Guide

6.3.1 Preferences

FrontBaseManager's preferences system allows you to specify your start-up transaction settings, fetch
limiting, and a few interface details so that you don't have to keep switching from the factory defaults to
the setup that you prefer. The transaction settings specified in your preferences will be set every time you
start up a new database connection.

Your fetch limit will also be set when you start a new database connection. The continuation action tells
the server what to do when it hits the fetch limit. The two choices are to stop the fetch or to fetch all the
available rows.

The interface details sections allows you to specify whether you want the SQL log drawer open or closed
when the connection window first opens. (You can, of course, change it manually. See section 4.2 for how
to do so.) SQL highlighting is a powerful feature that can greatly reduce SQL 92 syntax errors by showing
you which words are SQL 92 reserved keywords. (One benefit of this is reminding you to wrap your
column names in quotes if they are named the same as any SQL 92 reserved keyword.) Finally, you can
set a preference to keep your SQL history in the SQL Interpreter unique. This means that if you issue
"select * from foo;" then some other SQL statement, then "select * from foo;" again, you will not get a
second "select * from foo;" in the history. Instead, the SQL history will move the "select * from foo;"
already in the history to the bottom of the history list.

FrontBaseManager
Odds-n-Ends

Users Guide FB-171

6.3.2 File Import
FrontBaseManager version <version-number> first introduced an intuitive user interface to take advantage
of FrontBase's powerful import functionality. To access the Import helper interface, select FileImport.

The first screen allows you to specify where the file is and what general format the filed is in. You can
choose between the file being on your local client machine or being on the database server. (If the server
is your local machine, this choice will be disabled.) If the file resides locally, you can also use the Set...
button to browse your local file system for the file. The "File Type" allows you to specify the general
format of the file. If it is a FrontBase export, choose FrontBase. If Microsoft Access produced the file,
choose Microsoft Access. For most flat file imports, you'll want to choose Text File. After selecting the
file location and type, click Next to go on to the next screen.

FrontBaseManager
Odds-n-Ends

FB-172 Users Guide

Now that you've specified where the file is located and the general format, you'll get a preview of the first
few lines of the file. This is also the screen where you'll specify the column and row delimiters (the
separator between each input file column and row) and the lines at the top of the file that the import
process should skip. As you change the delimiters and lines to skip, your preview will change to show
how the data would be imported. You'll get a chance on the next screen to choose the destination of this
import.

FrontBaseManager
Odds-n-Ends

Users Guide FB-173

In this screen you'll choose which table to use in this import. If you'd like, you can change schemas with
the drop down above the table list to access tables from other schemas. There are also several import
options on this screen. You can choose whether the process should stop if it encounters errors, whether the
database server should enforce all integrity constraints (such as unique constraints and check constraints),
whether single or double quotes should be removed around the values in the file, and whether the column
names are specified in the file. FrontBase and OpenBase type imports have well-defined file formats with
the column names specified in the file so you can just click Finish on this screen and you'll be done. If
your file was generated from Microsoft Access, the column names are specified in the file so you can
check the "Column names specified in file" checkbox and click Finish. However, if you are importing a
text file, flat file, or Microsoft Access file without column names specified in the file, you'll need to
specify the columns to use for this import. That's done on the next screen.

FrontBaseManager
Odds-n-Ends

FB-174 Users Guide

On this screen, you'll need to match up each "Input Column" with one "Table Column". Not every
database table column needs to have an input column specified but every input column must have a table
column specified for it. If you'd like, you can assign one of your table columns to "Unique". This table
column must be a column of type INTEGER and will get a unique value for each row in the import. If the
data file is local or is on the server but your server is local, FrontBaseManager will be able to open the file
and count how many input columns the file has. However, if the file resides on the database server and the
client cannot access the file, you'll need to specify how many input columns this file contains. If that is the
case, here is the screen you'll see:

FrontBaseManager
Odds-n-Ends

Users Guide FB-175

Notice how changing the number of data columns (3 in this case) changes how many input columns you'll
see on the right side. Once you've matched up each input column with a table column, click Finish and
your import will begin. If the file resides locally, you'll see a progress bar.

If the Import helper does not work for your import file, please contact tools@frontbase.com with the
details of your problem.

6.3.3 SQL Log
The SQL log drawer is a very handy way of knowing exactly what SQL is sent to the server. However, if
you'd like, you can close the SQL Log Drawer by either dragging from the bottom edge of the SQL Log
drawer up into the Connection window, by selecting View>Toggle SQL Log or by hitting Command-L. If
the Log Drawer is hidden, you can reveal it again by selecting View>Toggle SQL Log or by hitting
Command-L. You can clear the SQL Log at any time by hitting Command-K.

FrontBaseManager
Known Issues

FB-176 Users Guide

6.4 Known Issues

6.4.1 Removing Unreachable Remote Databases
You can wait for FrontBaseManager to time out on its attempt to connect to the unreachable database and
then de-monitor the database in the Monitoring panel. Alternatively, you can do it manually. First, make
sure that FrontBaseManager isn't running. Then, find the following file in your home directory:

Library/Preferences/com.frontbase.FrontBaseManager.plist

Open it up in a text editor and search for the "monitoredDatabases" key. You should see something like:

<key>monitoredDatabases</key>
<array>
 <dict>
 <key>databaseName</key>
 <string>database1</string>
 <key>hostName</key>
 <string>localhost</string>
 </dict>
 <dict>
 <key>databaseName</key>
 <string>database2</string>
 <key>hostName</key>
 <string>laptop</string>
 </dict>
</array>

Delete the entry for the database(s) on your laptop. You should be left with something like:

<key>monitoredDatabases</key>
<array>
 <dict>
 <key>databaseName</key>
 <string>database1</string>
 <key>hostName</key>
 <string>localhost</string>
 </dict>
</array>

FB-177 Users Guide

7 sql92
The sql92 command line tool enables administration of FrontBase databases directly from the command
line and from scripts.

This chapter contains the following:

• Getting Started on page 177
• Command Syntax on page 178
• sql92 Input on page 179
• Command Line Editing on page 179.
• Commands on page 181

NOTE: Please note that only basic commands are included in this section.

7.1 Getting Started
The sql92 command-line tool is located in the installation bin directory <FB home>/FrontBase/bin. In
order to start sql92, do the following:

– Open a terminal application/command-line
– Start sql92 with the command <FB home>/FrontBase/bin/sql92

If you include <FB home>/FrontBase/bin in your $PATH environment variable, you only need to write
sql92 to start the tool.

Below is a small example demonstrating how to create a database and connect to it on Mac OS X:

bash$ /Library/FrontBase/bin/sql92
sql92#1> CREATE DATABASE db0;
sql92#1> CONNECT TO db0 USER _system;
> Auto committing is on: SET COMMIT TRUE;
db0@localhost#3>

... Execute your commands

db0@localhost#3> exit;

sql92
Command Syntax

FB-178 Users Guide

7.2 Command Syntax

sql92 <options> [<filename> [<arguments> ...]]

If a filename is specified, sql92 reads and executes the SQL 92 statements in the file. If the input file is
omitted, SQL 92 statements are read from standard input. All output is written to standard output. When
input is read from a file all occurrences of the strings $0, $1, ... in the input are substituted by the
corresponding argument, except when occurring inside a string literal. If an argument is not given it is
substituted with the empty string.

7.2.1 Options
-a Autocommit. When a new connection to a database is created do not enable auto

commit.

-c Compare. Perform a test and compare the output with the input. If they are equal write
a passed comment; otherwise write a failed comment.

-e Exit on error. Exit sql92 when an error is encountered. This is the default behavior
when input is read from a file.

-i Ignore. Do not exit when an error is encountered, this is the default behavior when
input is read from a terminal.

-l <number> Fetch limit. At most <number> of rows is fetched from any result set.

-m Metadata. Print metadata as returned from the server when it has executed sql
statements.

-n Non-comparable. Print a note saying that the output must be inspected as a comparison
would fail.

-p Prompt. Prompt for commands. This is the default behavior when input is read from a
terminal.

-q Quote. Allow control characters in string literals. By default sql92 does not allow
control characters in string constants.

-s Silent. Do not print commands as they are executed. By default, statements are printed
when the input read from a file.

sql92
sql92 Input

Users Guide FB-179

-t Time. Print seconds spent by the server to interpret an SQL statement, or seconds
including fetching the results, as well as seconds spent by the server to interpret the
fetch statement.

-u <encoding> Input encoding. The <encoding> argument specifies the encoding of the input. The
default is UTF8 that will also accept us-ASCII.

-v Verbose. Print statements as they are executed.

-w Warnings. Print warnings.

7.3 sql92 Input
An sql92 command is always terminated by a ';' character. When you type input to sql92 it will not
interpret the statement until a ';' character is met. This allows an SQL 92 statement to span several lines.

Most SQL 92 statements are interpreted by the FrontBase SQL server, but a number of commands are
interpreted by sql92 itself. These commands typically deal with connections to the server and
administration of the input files.

Comments start with a '#' character or with the '--' string and are terminated by the end of line. The '#' as a
comment delimiter allows you to write UNIX interpreters. Comments are considered part of the input and
are thus part of the verbose output. Lines beginning with the character '>' are also regarded as comments,
but are not regarded as part of the verbose output. Results from executing SQL 92 statements are written
with lines beginning with '>'. This allows you to write test scripts where the output of the script is the
same as the input, simplifying regression testing.

When sql92 is invoked it attempts to execute an initialization file with the name .sql92rc.sql. sql92
searches the current working directory and the current user's home directory.

7.4 Command Line Editing
When sql92 reads input from a terminal it provides command line editing with the following key-
bindings:

Left arrow...Cursor left
Right arrow Cursor right
Down arrow Previous history line
Up arrow ...Next history line
Crtl-A Cursor to beginning of line
Crtl-B Cursor left

sql92
Command Line Editing

FB-180 Users Guide

Crtl-C Clear line
Crtl-D End of file exit sql92
Crtl-E Cursor to end of line
Crtl-F Cursor Right
Crtl-H Delete character in front of cursor
Crtl-I Complete filename
Crtl-K Delete from cursor to end of line
Crtl-M Execute line
Crtl-N Next history line
Crtl-P Previous
Crtl-S Enter search in history mode
Crtl-Z ... Suspend
Delete Delete character in front of cursor
Backspace Delete character in front of cursor
Return Execute line
Tab Complete filename

When the command line is in the search in history mode the following key bindings are in effect:

Down arrow ... Previous matching history line
Up arrow Next matching history line
Crtl-D End of file exit sql92
Crtl-S Next matching history line
Crtl-H Delete character in front of cursor
Delete Delete character in front of cursor
Backspace Delete character in front of cursor
Crtl-C Exit search and do not update current line
Esc Exit search and do not update current line
Crtl-M Exit search and update current line

When the history search mode is entered, the current line is used as the initial search string. When the
search string is changed the search starts from the most recent history line and searches towards the oldest.
A history line matches a search string if the search string is a case and space blind prefix of the history
line.

When a command is executed it is added to the history as the newest. If the new history line matches a
line already in the history the old line is removed. The length of the history is limited to 500 lines.

The h; command prints out the command history, !! recalls the newest history line, !<n> recalls the n'th
history line.

When sql92 is reading input from a terminal, pressing CTRL-C will interrupt the execution of the
command and return to the command prompt.

sql92
Commands

Users Guide FB-181

7.5 Commands
When sql92 reads commands it will in most cases forward the SQL text to a FrontBase database server,
which will interpret the SQL and possibly produce a result. sql92 will read and print the result, in most
cases a set of rows. But sql92 does recognize a number of sql92 specific commands, most notably the
commands for creating a connection to the database server.

7.5.1 sql92 Specific Command Summary (Alphabetical)

ADD CLIENT
ADD MEMBER
agent commands
AUTOSTART
autostart command
clustering commands
CONNECT TO
connection commands
CREATE CLIENT
CREATE CLUSTER
CREATE DATABASE
database commands
default database commands
DEFINE BLOB
DEFINE CLOB
DELETE DATABASE
DISCONNECT
INTERRUPT AGENT
LAPTIME
password commands
REMOVE CLIENT
REMOVE MEMBER
replicator commands
SCRIPT
SET CLUSTER
set commands
SET CONNECTION
SET DATABASE PASSWORD
SET DEFAULT DATABASE
SET FORMAT
SET MEMBER
SET OUTPUT
SET PASSWORD
SHOW CACHES
SHOW CLIENTS

sql92
Commands

FB-182 Users Guide

SHOW CLUSTER
show commands
SHOW CONNECTIONS
SHOW DATABASE
SHOW DATABASE LOG
SHOW DATABASES
SHOW DEFAULT DATABASE
SHOW HISTORY
SHOW LICENSE
SHOW LOGS
SHOW MEMBER
SHOW MEMORY
SHOW SCHEMA
SHOW SIZE
SHOW TABLE
SHOW TIMEZONE
SHOW TRANSACTION
SHOW USAGE
SHOW VIEW
SLEEP
START CLUSTER
START DATABASE
START MEMBER
START REPLICATOR
START STOPWATCH
STOP AGENT
STOP CLUSTER
STOP DATABASE
STOP MEMBER
STOP REPLICATOR
STOP STOPWATCH
timing commands

7.5.2 Database Commands
7.5.2.1 Create Database

CREATE DATABASE <database-name>
 [ON|@|HOST <host-name>]
 [PASSWORD <password>]
 [OPTIONS <option>...];

sql92
Commands

Users Guide FB-183

Create a new database named <database-name> on the host named <host-name>. If <host-name> is not
specified, localhost is used. If the FBExec on the target host requires a password it can be specified; if it is
not and sql92 is running interactively, the user will be prompted for the password, otherwise the statement
will fail. The specified options will be used when creating the database.

7.5.2.2 Start Database

START DATABASE <database-name>
 [ON|@|HOST <host-name>]
 [PASSWORD <password>]
 [OPTIONS <option>...];

Start the database named <database-name> on the host named <host-name>. If <host-name> is not
specified, localhost is used. If the FBExec on the target host requires a password it can be specified; if it is
not and sql92 is running interactively, the user will be prompted for the password, otherwise the statement
will fail. The specified options will be used when starting the database.

7.5.2.3 Delete Database

DELETE DATABASE <database-name>
 [ON|@|HOST <host-name>]
 [PASSWORD <password>];

Delete the database named <database-name> on the host named <host-name>. If <host-name> is not
specified, localhost is used. If the FBExec on the target host requires a password it can be specified; if it is
not and sql92 is running interactively, the user will be prompted for the password, otherwise the statement
will fail.

7.5.2.4 Stop Database

STOP DATABASE;
STOP DATABASE <database-name>
 [ON | @ | HOST <host-name>];

The first form stops the currently connected database. The second form stops the database on the host
specified. In order to stop a database you must be connected as user _SYSTEM. The command will
attempt to create a system connection and if needed prompt for the database password and the _SYSTEM
password.

sql92
Commands

FB-184 Users Guide

7.5.3 Connection Commands
7.5.3.1 Connect

CONNECT TO <database-name> | <port-number>
 [ON|@|HOST <host-name>]
 [DATABASE_PASSWORD <database-password>]
 [AS <connection-name>]
 [USER <user-name>]
 [PASSWORD <password>];

CONNECT TO DEFAULT;

The first form establishes a connection to the database named <database-name> on the host named <host-
name> and with the optional database password <database-password>. If <host-name> is not specified,
localhost is used. The connection is named <connection-name>, which is also used as prompt value. If the
connection name is not specified, the connection is named with the name of the database name and the
name of the host. The <user-name> specifies the authorization identifier used by the SQL 92 session to
establish a session. If the <user-name> is not specified, the login name of the host operating system is
used. The <password> specifies the user password. If the database password, the user password, or the
user names is not specified but required, sql92 will prompt for the required values.

The second form establishes the default connection.

7.5.3.2 Set Connection

SET CONNECTION <connection-name>;
SET CONNECTION DEFAULT;

The first form makes the connection with the name <connection-name> the current connection. The
second form makes the default connection the current connection.

7.5.3.3 Disconnect

DISCONNECT <connection-name>;
DISCONNECT CURRENT;
DISCONNECT ALL;

The first form disconnects the connection with the name <connection-name>. The second form
disconnects the current connection, and the third form disconnects all connections.

sql92
Commands

Users Guide FB-185

7.5.3.4 Show Connections

SHOW CONNECTIONS;

Shows all the connections that have been established.

7.5.4 Password Commands
7.5.4.1 9.5.4.1 Set Database Password

SET DATABASE_PASSWORD [<password>];

Set the database password to <password>. If <password> is omitted, future connections will not require a
password.

7.5.4.2 Set Password

SET PASSWORD [<password>]
 [USER <user-name>]
 [OLD <old-password>];

Set the password for the user with the name <user-name> to <password>. If the user already has a
password it must be specified as <old-password>. If <password> is omitted, the user may login without a
password.

7.5.5 Default Database Commands
7.5.5.1 Set Default Database

SET DEFAULT DATABASE <database-name>
 [ON | @ | HOST <host-name>]
 [DATABASE PASSWORD '<password>']
 [PASSWORD '<password>']
 [HOST PASSWORD '<password>'];

Identify the specified database as the "default" database. The default database identifies the master
database for replication commands, and a (n arbitrary) cluster member for clustering commands. Any
necessary password may be specified.

sql92
Commands

FB-186 Users Guide

7.5.5.2 Show Default Database

SHOW DEFAULT DATABASE;

Show the current default database.

7.5.6 Replicator Commands
7.5.6.1 Start Replicator

START REPLICATOR [PASSWORD <password>] [OPTIONS <option> ...];

Start a replicator for the default database, using the specified options, if any.

7.5.6.2 Create Client

CREATE CLIENT <database-name>
 [ON | @ | HOST <host-name>]
 [DATABASE PASSWORD <password>]
 [PASSWORD <system-password>];

Works like Add Client below, except that if the client database does not exist, a copy of the master
database is made (which requires a server for the master database to be running), and if a server for the
client database is not running, it is started.

7.5.6.3 Add Client

ADD CLIENT <database-name>
 [ON | @ | HOST <host-name>]
 [DATABASE PASSWORDS <password>]
 [PASSWORD <password>];

Add the client named <database-name> on the host named <host-name> to the client list of the replicator
for the default database. Whenever the replicator and the server for the client is both running, the
replicator will keep the client up-to-date. The replicator may need the database password and the password
for the _SYSTEM user of the client database, in which case they may be specified

7.5.6.4 Remove Client

REMOVE CLIENT <database-name>

sql92
Commands

Users Guide FB-187

 [ON | @ | HOST <host-name>];

Remove the client from the client list of the replicator for the default database. The client is no longer
updated, but may later be added to the client list again.

7.5.6.5 Show Clients

SHOW CLIENTS;

Show the client list of the replicator for the default database, and the status for each client.

7.5.6.6 Stop Replicator

STOP REPLICATOR;

Stop the replicator for the default database.

7.5.7 Clustering Commands
7.5.7.1 Create Cluster

CREATE CLUSTER [OPTIONS <option> ...];

Create a cluster consisting of the default database (only). If the default database does not exist, a new
database is created. Then a server for the default database is started, and any options needed to start this
database must be specified; the -rcluster option is implicitly added.

7.5.7.2 Start Cluster

START CLUSTER;

Attempt to start servers for all members of the cluster identified by the default database. The servers will
be started in the proper order.

7.5.7.3 Stop Cluster

STOP CLUSTER;

sql92
Commands

FB-188 Users Guide

Attempt to stop any running servers for all members of the cluster identified by the default database.

7.5.7.4 Show Cluster

SHOW CLUSTER [DESCRIPTOR | ALL];

Display properties of the cluster identified by the default database. DESCRIPTOR, if specified, directs
certain static information about the cluster to be displayed whereas ALL, if specified, requests further
dynamic information to be displayed.

7.5.7.5 Set Cluster Descriptor

SET CLUSTER DESCRIPTOR;

Distribute the cluster descriptor associated with the cluster member identified by the default database to all
members identified by said cluster descriptor. After this operation, all cluster descriptors of all members of
a cluster should be consistent (provided that all members were accessible), and that is exactly the purpose
of this command.

7.5.7.6 Add Member

ADD MEMBER <database-name>
 [ON | @ | HOST <host-name>] [OPTIONS <option> ...];;

Add the specified database as a member to the cluster identified by the default database. If the specified
database does not exist, a new database is created, and it must be possible to bring the new member up-to-
date from existing members of the cluster. A server for the new member is started, and any options needed
to start this database must be specified; the -rcluster option is implicitly added.

7.5.7.7 Remove Member

REMOVE MEMBER <database-name>
 [ON | @ | HOST <host-name>];

Remove the specified database from the cluster identified by the default database.

7.5.7.8 Start Member

START MEMBER <database-name>
 [ON | @ | HOST <host-name>] [OPTIONS <option> ...];

sql92
Commands

Users Guide FB-189

Attempt to start a server for the specified cluster member. If any options are specified, they overwrite
existing options for the database, and the -rcluster option is implicitly added.

7.5.7.9 Stop Member

STOP MEMBER <database-name>
 [ON | @ | HOST <host-name>];

Attempt to stop a running server for the specified cluster member.

7.5.7.10 Show Member

SHOW MEMBER <database-name>
 [ON | @ | HOST <host-name>]
 [DESCRIPTOR | ALL];

Display properties of the specified cluster member. DESCRIPTOR, if specified, directs certain static
information about the cluster to be displayed whereas ALL, if specified, requests further dynamic
information to be displayed.

7.5.7.11 Set Member

SET MEMBER <database-name>
 [ON | @ | HOST <host-name>]
 MAJORITY TRUE | FALSE;

SET MEMBER <database-name>
 [ON | @ | HOST <host-name>]
 READONLY TRUE | FALSE;

Set the specified property to the specified value for the specified cluster member. The explicit setting of
the readonly property to FALSE opens for the possibility to create inconsistencies between cluster
members, and should only be done by someone knowledgeable.

7.5.8 Autostart Commands
7.5.8.1 Autostart

AUTOSTART
 [ON | HOST <host-name>];

sql92
Commands

FB-190 Users Guide

With the autostart command the user can control which databases are started on the host named <host-
name>, when it is restarted. If <host-name> is not specified, localhost is used. The autostart command has
the following sub-commands, and no other commands are accepted until the autostart command loop is
exited:

SHOW;

Show the list of autostarted databases. The list is numbered and the number can be used to reference to a
specific database.

ADD <database-name> [<option> ...];

Add a database to the list of autostarted databases. The server is started with the specified options.

OPTIONS <number> <option> ...;

Set the options for the selected database.

DELETE <number>;

Remove the specified database from the list of autostarted databases.

SAVE [PASSWORD <password>];

Commit the changes. If the FBExec on the host requires a password it must be specified. If not, and sql92
is running interactively, the user is prompted for the password.

EXIT;
QUIT;

Exit the autostart command loop.

sql92
Commands

Users Guide FB-191

7.5.9 Show Commands
7.5.9.1 Show Usage

SHOW USAGE;

Print a summary of the sessions for the database currently connected.

7.5.9.2 Show Database Log

SHOW DATABASE LOG <database-name>
 [ON | @ | HOST <host-name>];

Show the tail of the database log file for the database named <database-name> on the host named <host-
name>. If the host name is not specified the local host is assumed.

7.5.9.3 Show Databases

SHOW DATABASES
 [ON | HOST <host-name>];

Show the list of databases on the host named <host-name>. If <host-name> is not specified, localhost is
used

7.5.9.4 Show Database

SHOW DATABASE [FULL];

Show information about the currently connected database. If FULL is specified all available information is
shown.

7.5.9.5 Show License

SHOW LICENSE [FULL];

Show license details.

sql92
Commands

FB-192 Users Guide

7.5.9.6 Show Logs

SHOW LOGS [ALL | <number>];

Display the status for the transaction log files for the currently connected database. If ALL is specified, all
transaction logs are shown. If <number> is specified, the latest n transaction log files are displayed. The
default is 1.

7.5.9.7 Show Memory

SHOW MEMORY [ALL];

Show the status of the memory allocated by the database server currently connected. Please refer to the
memory use section in the Administration chapter.

7.5.9.8 Show Caches

SHOW CACHES;
SHOW CACHES <table-name>;
SHOW CACHES <schema-name>.<table-name>;

Show statistics for the caches. The first form show the caches in the current schema, the second form
shows the caches for the specified tables, and the last one shows the tables in the specified schemas. The
schema name and the table name may contain the SQL 92 wild card characters % and _.

7.5.9.9 Show Transaction

SHOW TRANSACTION [FULL];

Show the current transaction parameters.

7.5.9.10 Show Schema

SHOW SCHEMA <schema-name> [FULL];

Show the tables and views defined in the specified schema. If FULL is specified all available information
is printed.

sql92
Commands

Users Guide FB-193

7.5.9.11 Show Table

SHOW TABLE <table-name> [FULL];

Show the definition of the table. If FULL is specified all available information is printed.

7.5.9.12 Show View

SHOW VIEW <view-name> [FULL];

Show the view definition. If FULL is specified all available information is
printed.

7.5.9.13 Show Size

SHOW SIZE;
SHOW SIZE <table-name>;
SHOW SIZE <schema-name>.<table-name>;

Show the amount of disk space used for implementing the tables specified. The first form shows all tables
in the current schema, the second form shows the specified tables in the current schema, and the last form
shows the specified tables in the specified schemas. The schema name and the table name may contain the
SQL 92 wild card character % and _.

7.5.9.14 Show History

SHOW HISTORY;

Show the command history.

7.5.10 Agent Commands
7.5.10.1 Stop Agent

STOP AGENT <agent-number>;
INTERRUPT AGENT <agent-number>;

The first form terminates the agent specified by <agent-number>. The second form terminates the
operation that the specified agent is currently executing.

sql92
Commands

FB-194 Users Guide

7.5.11 Set Commands
7.5.11.1 Set output

SET OUTPUT [<file-name>];

Direct all output to the specified file. Output lines in the file are written without the leading >. If the
filename is omitted all output is written to stdout.

7.5.11.2 Set Format

SET FORMAT ROW|COLUMN|XML|SUPPRESS|<'template'>;

Controls the format used to print rows received from the server. If ROW is specified one row is written
per line, if COLUMN is specified, the default, then one COLUMN is written per line, if XML is specified
the output is written in XML format, and if '<template>' is specified each row is formatted according to
the template. SUPPRESS means that no output is produced.

The template string may contain format specifiers:

<format> :== %{<column>}{.<width>}<flag>
 %*{<width>}<flag>
 %{<width>}[<template>|<template>]
 %%
<column> :== positive integer
<width> :== positive integer
<flag> :== c -- column value
 l -- column label
 T -- table name
 S -- schema name
 N -- column name
 # -- the row number in the current result
set
 r -- the result set number

If the column or the width is omitted they are interpreted as 0.

The expanded string is padded with spaces to the width.

%{<width>}[<template>|<template>] iterates over all columns and expands the template for each. If the
<column> is not specified inside the iterator the current column is referenced. The first column is
expanded using the first template and the following columns by expanding the second.

sql92
Commands

Users Guide FB-195

 The %*<flag> form is a shorthand for %[%<flag> | <%flag>].

Other expansions:

%% %
\n new line
\r carriage return
\t tab
\ddd to the decimal unsigned byte values
\c to the character

7.5.12 Timing Commands
7.5.12.1 Start Stopwatch

START STOPWATCH;

Start the stopwatch.

7.5.12.2 Lap Time

LAPTIME [<comment>];

When sql92 is started with -c or -n write the elapsed time since the stopwatch was started and the
comment to standard output.

7.5.12.3 Stop Stopwatch

STOP STOPWATCH [<comment>];

When sql92 is started with -c or -n write the elapsed time since the stopwatch was started and the
comment to standard output, and stop the stopwatch.

7.5.12.4 Sleep

SLEEP <seconds>;

Sleep for <seconds> seconds.

sql92
Commands

FB-196 Users Guide

7.5.12.5 Show Timezone

SHOW TIMEZONE;

Show the name of the current time zone.

7.5.13 Other Commands
7.5.13.1 Define Blob and Define Clob

DEFINE BLOB <blob-name> LENGTH <length> VALUE {<hex-bytes>};
DEFINE CLOB <clob-name> LENGTH <length> VALUE {<hex-bytes>};
DEFINE CHAR <char-name> LENGTH <length> VALUE {<hex-bytes>};

Define a blob (or a clob, or a char string) object with the name <name>, length <length> in bytes, and the
value that is a list of <hex-bytes>. A <hex-byte> is two hexadecimal digits. The list of <hex-bytes> may
contain white space (newlines, tabs, spaces, etc.). The blob (or clob, or char string) object is defined and
can be referenced in subsequent SQL 92 statements. A reference has the form @'<name>' and will create
the blob (or clob, or char string) object for that particular column. The blob (or clob, or char string) object
will disappear when the next commit or rollback is executed.

7.5.13.2 Script

SCRIPT <path-to-file>;

Read and execute the sql92 commands from the specified file.

7.5.13.3 Exit and Quit

EXIT
QUIT

Exit sql92. The EXIT and QUIT commands are the only ones that do not need to be terminated with a ';'.

FB-197 Users Guide

8 FrontBase for the Developer
This chapter addresses issues that will be of interest for the developer of applications that integrate
FrontBase for their data source. The chapter is divided into the following sections:

• FBExec Invocation on page 197
• FrontBase Invocation on page 198
• FBReplicator Invocation on page 208
• FrontBase and Security on page 208
• Data types on page 213
• Mapping of Foundation/Java objects into FrontBase data types on page 220
• Primary Keys and Auto Generation on page 223
• Row Level Privileges on page 224
• What Collations can do for you on page 225
• Embedding FrontBase into your own application or solution on page 229

8.1 FBExec Invocation
FBExec acts as a broker between FrontBase databases running on your computer and client software
running on your computer or over the network.

When you install FrontBase, your computer will be set up so that FBExec is launched at start-up. In Mac
OS X this is achieved via the StartupItems folder of the Library folder. To make sure that FBExec is
running on a UNIX-based installation, enter the following in a terminal session:

ps axc | grep FBExec

If FBExec is running, the system should reply with something like:

374 ? S 0:00 FBExec

If FBExec is not running, you should start it as follows (assuming you have added <FB
home>/FrontBase/bin to your $PATH):

FBExec -daemon

Be sure to include the –daemon option so that the task doesn't end with your terminal session.

FrontBase for the Developer
FrontBase Invocation

FB-198 Users Guide

If you are running FrontBase on Mac OS X, you can use the Activity Monitor utility provided by Apple to
check whether FBExec is running. On Windows NT, you can use the Task Manager to check whether
FBExec is running. If it is not running, go to the Service Manager and start it. FBExec is installed as a
service so that it will start on system start-up.

8.1.1 Files
FBExec uses the following files, all located in the FrontBase installation directory:

FBExec.autostart
Contains the specification of databases to be automatically started when the FBExec is started, which
typically happens when the FrontBase server machine is booted. This file is best maintained using
FrontBaseManager or the sql92 tool.

FBExec.log
FBExec may be requested to log information concerning most FBExec events to this log file. By default,
this mechanism is disabled.

FBExec.passwd
For any FrontBase installation, server authentication may be enabled. This has the form of a password
which must be supplied for the FBExec to carry out any operation on a FrontBase database. When
enabled, the password is written to this file in digested form.

8.1.2 Options
FBExec obeys the following invocation options:

-autostart Start databases on FBExec start-up, as specified in the FBExec.autostart file
-console Relevant for Windows systems only: Allow FBExec to run from a command line
-daemon Run FBExec in the background, ie without controlling terminal
-log Enable logging into the FBExec.log file
-nolog Disable logging into the FBExec.log file. This is the default
-oldpasswd Remove an existing server authentication password
-newpasswd Define a new server authentication password
-version Display the current FBExec version

8.2 FrontBase Invocation

FrontBase for the Developer
FrontBase Invocation

Users Guide FB-199

8.2.1 Files
FrontBase writes the following files, all located in the FrontBase installation directory:

Backups/<database-name>.fb/B_<yyyy_mm_dd-hh:mm:ss>
The default location for backup files for the named database. The name of the backup file identifies the
point in time when the backup was initiated. In reality, backup files may be placed at arbitrary location s
in the file system, by specifying their path at the point of initiating them.

Databases/<database-name>.fb
The main file for the named database. If no devices other than the default are defined (see Storage
Management on page 97) this file contains all data in the database.

Databases/<database-name>.fb.log
Log information mainly concerning client connections and session identifications.

Databases/<database-name>.fb.pid
The PID of the FrontBase Server process managing the named database. If no Server is currently active
for the database, the PID of the latest Server is found here.

Databases/<database-name>.fb.sql
All SQL statements presented to the FrontBase Server, provided SQL logging has been enabled.

Databases/<database-name>.cluster
The description of the cluster composition, if the named database is part of a cluster setup.

TransactionLogs/<database-name>/L_<yyyy_mm_dd-hh:mm:ss>
A Transaction Log directory for the named database. The directory contains the file transactions.log, and
possibly other files, altogether making up a part of the Transaction Log for the named database. New
Transaction Log directories are created for various reasons, and the one with the latest date identification
is the current Transaction Log directory.

TransactionLogs/<database-name>/.lock
A Lock File enabling FrontBase Servers to ensure that no more than one Server is active for the named
database at any one point in time.

8.2.2 Options
FrontBase sports an extensive list of so called options that can be specified when a FrontBase Server is
started. The options can be specified on the command line or when using e.g. FrontBaseManager or the
sql92 tool to start a FrontBase Server.

autocommit Automatically COMMIT all transactions after each SQL statement

FrontBase for the Developer
FrontBase Invocation

FB-200 Users Guide

autocreate Automatically create new user names as database clients connect
clientLimit Limit number of concurrent clients
clients Exit (or not) after database initialisation
console Run as command-line tool in background (relevant for Windows only)
core Specify maximum size of core file
create Create a new database unconditionally
daemon Run in background (ie, without controlling terminal)
fbexec Run with or without the FBExec process
index Specify the default mode for new indexes
init Initialize database from specified file
keeptlog Prevent deletion of transaction logs on database creation
key Specify encryption key for data encryption on disk
localonly Accept only local connections
logSQL Log SQL statements to a file as they are received
majority Override majority property of cluster member
port Specify a port number to use for connection creation
prvchk Disable privilege checks
rmaster Run as replication master
rclient Run as replication client
rcluster Run as member of a cluster
rdd Enable the Raw Device Driver
replicator Start a replicator for database
restore Restore from a backup
rlpriv Enable Row Level Privileges
rollforward Control database update from transaction log
scomm Enable client communication encryption
sdisk Enable data encryption on disk
tlog Disable transaction logging
transaction Establish database transaction number
triggers Enable trigger mechanism
vmlimit Specify maximum size of process vitual memory
version Display FrontBase version identification, and exit

8.2.2.1 autocommit

-autocommit[=no|yes] yes is the default

FrontBase offers an auto commit feature whereby a transaction is automatically committed after the SQL
statement that initiated the transaction has been successfully executed. All new client connections inherits
the general setting of the auto commit feature.

FrontBase for the Developer
FrontBase Invocation

Users Guide FB-201

An individual client connection may turn its auto commit feature off or on by executing the following
SQL statement:

SET COMMIT FALSE; -- Turn the auto commit feature off
SET COMMIT TRUE; -- Turn the auto commit feature on

If the option is omitted when a FrontBase database is started, the auto commit feature is turned off.

8.2.2.2 autocreate

-autocreate[=no|yes] yes is the default

By specifying –autocreate=yes, all unknown users connecting to the database will automatically get
created. Please note that by turning the feature on, you are violating the security of the database.

If the option is omitted when a FrontBase database is started, unknown users will not be allowed to
connect.

8.2.2.3 clientLimit

-clientLimit=<client number>

By specifying –clientLimit, The maximum number of concurrent client connection accepted by the
database server is limited to the specified number. Otherwise, this number is given by a system default.

8.2.2.4 clients

-clients[=no|yes] yes is the default

By specifying –clients=no, the server will exit at the point in its start-up where it would otherwise permit
client connections. The effect of this is that the database has been brought up-to-date with respect to its
transaction log.

8.2.2.5 console

-console

By specifying –console, the server may run as a command line tool, rather than as a service. Relevant for
Windows only.

FrontBase for the Developer
FrontBase Invocation

FB-202 Users Guide

8.2.2.6 core

-core=no|yes|<limit in MB>

This option controls the creation of core files, should the FrontBase server crash. –core=no disables the
creation of core files, –core=yes limits the size of a core file to 1.500 MB, and otherwise the maximum
size of a core file may be specified.

If the option is omitted when a FrontBase database is started, the creation of core files is diabled.

8.2.2.7 create

-create[=no|yes] yes is the default

By specifying –create=yes, a new database is unconditionally created, overwriting an existing database
with the same name. This irreversibly deletes the existing database, so the option should be used with care.

8.2.2.8 daemon

-daemon

By specifying –daemon, FrontBase executes in the background, decoupled from any controlling terminal.
The option –b is synonymous with this option.

8.2.2.9 fbexec

-fbexec[=no|yes] yes is the default

By specifying –fbexec=no, the starting FrontBase database will not try to establish communication with
the FBExec process. This enables FrontBase to run in special environments where the FBExec for
specialized reasons isn't needed. Please note that this option requires use of the -port option and requires
custom client side software.

Normally a FrontBase database will communicate with the FBExec, which functions as an information
gateway on a host where FrontBase is installed.

8.2.2.10 index

-index[=time|space] space is the default

FrontBase for the Developer
FrontBase Invocation

Users Guide FB-203

All indexes created in a FrontBase database are created either with the PRESERVE SPACE or the
PRESERVE TIME mode set. PRESERVE SPACE is a very memory efficient mode, which works well for
tables with up to 1.000.000 rows. PRESERVE TIME uses more memory, but bodes for excellent
performance for tables with millions of rows.

The mode of the indexes created for a given table can be changed by executing one of the following SQL
statements:

ALTER TABLE <table> SET INDEX PRESERVE SPACE;
ALTER TABLE <table> SET INDEX PRESERVE TIME;

8.2.2.11 init

-init=<filename>

The specified file is used for initializing the newly created database. This implies that –init may not be
specified for an existing database. The specified file must contain SQL statements (only).

8.2.2.12 keeptlog

-keeptlog

This option prevents the transaction log from being deleted, in situations where this would otherwise
happen (eg, when –create has been specified).

8.2.2.13 key

-key=<filename>

FrontBase offers a high degree of protection of your data by deploying a unique encryption scheme (see
Encryption on page 210). Actual data stored on the hard disk may be encrypted, using the encryption keys
found in the specified file

8.2.2.14 localonly

-localonly

FrontBase for the Developer
FrontBase Invocation

FB-204 Users Guide

This option specifies that the FrontBase server must only accept connections from clients running on the
same computer as the database.

The default is to accept connections from networked as well as local clients.

8.2.2.15 logSQL

-logSQL

This option specifies that the FrontBase server should log all received SQL statements in a file. The file is
created in the Databases directory of a FrontBase installation and is named:

Databases/<database-name>.fbsql Windows NT
Databases/<database-name>.fb.sql All other platforms

The default is not to log ForewordSQL statements.

8.2.2.16 majority

-majority=no|yes

This option overrides the implicit calculation of the majority property of the starting FrontBase cluster
member – see Provisions for Absent Servers on page 81. Specifying majority to be TRUE
(–majority=yes) enables the starting cluster member to commit transactions. If this is in contrast to the
result of the implicit calculation, the starting cluster member may commit transactions causing a
divergence of the clustered database.

WARNING! This option should be used with extreme caution.

8.2.2.17 port

-port=<port number>

A FrontBase database communicates with clients using BSD style sockets, requiring the clients to know
the so called port number before a connection can be made. Clients will communicate with the FBExec
process on port 20020 to get the port number of a given FrontBase database.

FrontBase for the Developer
FrontBase Invocation

Users Guide FB-205

A FrontBase database will normally acquire a port number from the host operating system, but in e.g. set-
ups with a firewall, static and known port numbers may have to be used. By using the –port option, a
FrontBase database can be directed to use a specific port number.

8.2.2.18 prvchk

-prvchk[=no|yes] Default is yes

In FrontBase 2.0 a number of privilege checks have been enforced, in particular the check for proper
SELECT privileges on referenced columns. This may “break” existing apps, so by specifying the
–prvchk=no option, no privilege checks will occur, and existing apps should work as with FrontBase 1.2.

8.2.2.19 rmaster , rclient, rcluster

-rclient
-rcluster
-rmaster

These options specify the role of the starting FrontBase database wrt. replication and clustering. –rclient
specifies that the database is a replication client (and as such, ,a read-only database for any client but the
FrontBase Replicator), –rcluster specifies that the database is a member of a cluster, and –rmaster
specifies that the database may serve as a replication master.

8.2.2.20 rdd

-rdd[=<size in MB>]

The Raw Device Driver offered by FrontBase is an advanced write-through cache mechanism, that also
supports use of a raw device (partition) as data storage, hence the name. This mechanism is described in
Raw Device Driver (RDD) on page 111.

The size of the cache need only be given the first time the option is specified for a given database or when
the size needs to be decreased or increased.

8.2.2.21 replicator

-replicator[=”<option string>”]

FrontBase for the Developer
FrontBase Invocation

FB-206 Users Guide

This option specifies that a FrontBase Replicator should (also) be started for the starting database. This
implies that the starting database should serve as a replication master. If an <option string> is given, it is
passed to the Replicator as the options for its start-up.

8.2.2.22 restore

-restore[=<filename>]

This option specifies that the starting database should be initialized from a FrontBase backup. If
<filename> is specified, it is a full path identifying the backup file, and if not, the backup file is taken to
be the newest found in the default location (<FB home>/FrontBase/Backups/<database>.fb). See Backup
and Restore on page 85.

8.2.2.23 rlpriv

-rlpriv

FrontBase offers a unique feature called Row Level Privileges, which allows you to assign privileges, like
on the files in a Unix file system, to each individual row in the tables of a database. The –rlpriv option
need only be given when a new database is created.

Refer to SELECTing the Access Privileges for a Row on page 225 for more information.

8.2.2.24 rollforward

-rollforward=no|<transaction number>

This option controls how far the database is brought up-to-date with respect to its transaction log, if
present. If –rollforward=no is specified, no transactions from the transaction log are executed, and
otherwise transactions up to and including the specified number are executed.

8.2.2.25 scomm

-scomm

FrontBase offers a high degree of protection of your data by deploying a unique encryption scheme – see
FrontBase and Security on page 209. This option specifies that the communication between clients and the
FrontBase database must be encrypted (streaming)

FrontBase for the Developer
FrontBase Invocation

Users Guide FB-207

8.2.2.26 sdisk

-sdisk

FrontBase offers a high degree of protection of your data by deploying a unique encryption scheme – see
FrontBase and Security on page 209.. This option specifies that the actual data store on the hard disk must
be encrypted (block mode); the encryption keys must be specified with the –key option.

8.2.2.27 tlog

-tlog=no|yes

This option overrides the status of transaction logging for the duration of this activation of the FrontBase
server. If –tlog=no is specified, transaction logging is disabled, and otherwise it is enabled. In normal
operation, we strongly discourage disabling of transaction logging.

8.2.2.28 transaction

-transaction=<transaction number>

This option specifies the starting point of bringing the starting database up-to-date with respect to its
transaction log. The transaction number stored in the database is overridden by the specified number.

8.2.2.29 triggers

-triggers[=no|yes] Default is no

This option controls the trigger mechanism defined by SQL 99 and described in SQL 99 Triggers on page
96. If –triggers=yes is specified, support for triggers is enabled, otherwise it is disabled.

8.2.2.30 vmlimit

-vmlimit=<limit in MB>

This option specifies the maximum size of the virtual memory of the FrontBase server process. If this
option is not specified, the maximum size is dictated by system constraints.

FrontBase for the Developer
FBReplicator Invocation

FB-208 Users Guide

8.2.2.31 version

-version

This option makes the FrontBase server display its version number, and then exit. Options --version and
–v are synonyms.

8.3 FBReplicator Invocation

8.3.1 Files
TransactionLogs/<database-name>/L_<yyyy_mm_dd-hh:mm:ss>
A Transaction Log directory for the named database. The FBReplicator monitors the current Transaction
Log directory for the database that it services, and it reads the SQL written to these directories by the
FrontBase Server, and distributes this SQL to the replication clients for the named database.

TransactionLogs/<database-name>/FBRSClientList.txt
The description of the replication clients for the named database. This file is maintained exclusively by the
FBReplicator.

TransactionLogs/<database-name>/.replic
A Lock File enabling FBReplicators to ensure that no more than one FBReplicator is servicing the named
database at any one point in time.

8.3.2 Options
The Replicator accepts the following options:

-b Run as a background program (i.e., without controlling terminal).
-s Silent. The Replicator will not log events to stdout (default).
-v Verbose. The Replicator will log events to stdout.
-i <interval> Seconds. The polling interval determines how often the Replicator will

examine the transaction log of the master. The Replicator will only sleep
the specified amount of time when no transactions are pending
replication. The default value is 10 seconds.

-d <transactionlog-directory> Specifies the transaction log directory to be used for replication. To be
used when the transaction log is not in the default location.

-p <portno> Specifies the port number at which the Replicator will talk to the
controlling program (e.g., FBRAccess)

-k <keyfile> Specifies the file containing the encryption key for an encrypted
database. Must be specified when database is encrypted.

FrontBase for the Developer
FrontBase and Security

Users Guide FB-209

8.4 FrontBase and Security
With FrontBase you have several options for protecting your data, as well as protecting communication
against eavesdropping and tampering. The protection is obtained by applying passwords for authorization,
encryption of communication and data storage, and black/white listing of computers. It is also possible to
actually protect usage of the FrontBase server using a special built-in authentication feature.

8.4.1 Password Protection
Passwords may be of any length and passwords are never exposed outside the client software, and they are
not even in the database. A soon as an application passes a password to the FrontBase client software, a
one-way function is applied to generate a password digest. The function throws away parts of the
password so it is impossible to deduce the password from the digest. The user name is part of the digest so
two users with the same password will not have the same digest. The password digest is used for
verification instead of the password.

Two layers of password protection of database access are provided: Database password and user
passwords.

A different level of password protection is offered by the so-called Server Authentication which, when
enabled, requires password authorization of FBExec operations like creating, starting, stopping and
renaming FrontBase databases.

8.4.1.1 Database Password
If the database password is set, a client must send the database password to the server as part of the
connection protocol. If the FrontBase server cannot verify the password, the client connection is closed
down immediately.

8.4.1.2 User Password
Each database user can have a password, the password is verified by the FrontBase server when a session
is created for that user. If the verification fails the session is not created. When a session is successfully
created, the SQL 92 defined protection takes over.

8.4.1.3 Server Authentication
FrontBase has an authentication feature that is not enabled by default, since it would be an annoyance to
most developers who are not working in secure environments.

To enable this feature as root, run:

FBExec -newpasswd=secret

FrontBase for the Developer
FrontBase and Security

FB-210 Users Guide

Henceforth, the creation of databases, starting them, stopping them, etc., will require password
authentication. Access to individual databases can be further secured through the use of database
passwords and user passwords.

8.4.2 Encryption
Encryption is used to protect communication channels and data storage. When you create a FrontBase
database you may optionally specify that data stored on the disk should be encrypted, and optionally
specify that communication channels between the server and its clients must be secure.

8.4.2.1 Encryption of Data
Data stored on the disk is encrypted using a triple DES in cipher block chaining mode on 512 byte blocks,
the data store is block oriented with 512 bytes/block. The initialization vector depends on the logical
position of the block within the system, so that blocks with the same contents never generate identical
cipher text blocks.

The key used for encryption of data is a 64 bits initialization vector, and 3x56 bits for the DES encryption.

FrontBase also offers a much simpler encryption in the form of XOR’ing a 128-bit key onto data. The
XOR operation includes position dependent data, so that identical blocks generate distinct cipher text
blocks.

8.4.2.2 Secure Channels
A client and the server are able to establish a secure channel. When a client connects to the server, it
receives a public RSA key from the server, the client generates a set of random session keys, one for
outgoing data and one for incoming data, encrypts those with the public RSA key, and sends the result to
the server. The server decrypts the result from the client with use of its private key, and thus the client and
the server have established a common set of secret keys.

The algorithm used for encryption of communication data is a triple DES in byte stream mode with cipher
text and clear text feed back. The clear text feedback ensures that an error will propagate to all bytes
following the error, which makes detection of errors simple, introduces a small amount of redundancy and
uses that for verification in the receiving end.

8.4.3 Tools and Options
A few tools are provided to support key management, and FrontBase has a number of options related to
security.

8.4.3.1 FBKeyGenerator
The key generator is used to generate a set of keys that can be used by FrontBase:

FrontBase for the Developer
FrontBase and Security

Users Guide FB-211

FBKeyGenerator des | xor [<key-filename>]

FBKeyGenerator may generate keys for DES encryption as well as for a much simpler XOR encryption.
If the key-filename is specified, the keys are written to that file, otherwise the keys are written to standard
output. Each key set is assigned a key identification.

Example key text:

DES f756cc7e 0e589bc4b68ab745 c80c0621e2472f64 eaecef3047bdad1c ae0af69be877b4c9

The first 4-byte number is the key identification.

8.4.3.2 FrontBase
FrontBase has three security options:

-scomm If present, communication between the server and its clients is secure

-sdisk If present, data stored on the disk are encrypted with a specified encryption key

-key=<file-name> Encryption keys are read from the named file.

If -sdisk is specified the server requires a set of keys in order to operate. If -key is specified the keys are
read from that file, otherwise they are read from standard input. When the server is started it checks that
the correct and required keys have been specified.

8.4.3.3 FBChangeKey
The FBChangeKey tool can be used to encrypt a database that was not previously encrypted, to change the
keys used for encryption, or decrypt an encrypted database.

FBChangeKey <database-file> [<key-filename> [<key-filename>]]

If no key-filenames are provided, one or two key are read from standard input. If you provide one key, the
database is encrypted if it was not, and decrypted if it was encrypted. If you provide two keys the database
is decrypted by the first key, and encrypted with the second.

8.4.4 IP Address Checks
When a client connects to the FrontBase server, the IP address of the client is checked against a black and
white list. If the IP address is blacklisted the connection is refused, if it is white listed the connection is

FrontBase for the Developer
FrontBase and Security

FB-212 Users Guide

accepted. The list is arranged such that it will work both as a white list and as a black list. If an IP address
is white listed you can specify whether you require a secure communication channel to that IP address. In
most cases it will be ok to allow local connections to run without encryption.

A related option is the -localonly option, which makes sure that the FrontBase only allows connections
from clients running on the same host as the FrontBase server.

FrontBase for the Developer
Data Types

Users Guide FB-213

8.5 Data Types
SQL 92 offers an extensive list of data types all of which are supported by FrontBase. Additionally,
FrontBase supports a number of data types from SQL3. Although the list of data types seems long and
maybe even confusing, don't worry, many of the names denote the same data type (such is the work that
comes from a committee).

• TINYINT on page 213
• SMALLINT on page 214
• INTEGER, INT on page 214
• LONGINT on page 214
• DECIMAL[(<precision> [, <scale>])] on page 214
• NUMERIC[(<precision> [, <scale>])] on page 214
• FLOAT[(<precision>)] on page 215
• REAL on page 215
• DOUBLE PRECISION on page 215
• CHARACTER, CHAR on page 215
• NATIONAL CHARACTER, NATIONAL CHAR, NCHAR on page 216
• CHARACTER VARYING, CHAR VARYING, VARCHAR on page 216
• NATIONAL CHARACTER VARYING, NATIONAL CHAR VARYING, NCHAR VARYING

on page 216
• BIT on page 216
• BIT VARYING on page 217
• BYTE on page 217
• DATE on page 217
• TIME on page 217
• TIME WITH TIME ZONE on page 217
• TIMESTAMP on page 218
• TIMESTAMP WITH TIME ZONE on page 218
• INTERVAL on page 218
• BLOB on page 219
• CLOB on page 219
• BOOLEAN on page 219

8.5.1 TINYINT
Implemented as an 8-bit integer.

CREATE TABLE t0(c0 TINYINT, ...);

FrontBase for the Developer
Data Types

FB-214 Users Guide

8.5.2 SMALLINT
Implemented as a 16-bit integer.

CREATE TABLE t0(c0 SMALLINT, ...);

8.5.3 INTEGER, INT
Implemented as a 32-bit integer. Apart from the obvious use, this data type is often used for single column
PRIMARY KEYs. If you are using EOF, you may want to look into using EOF's auto-generated primary
keys and the BYTE type as EOF can then generate keys without a database access. The trade off is that the
12-byte primary keys thus generated are unintelligible, while a 32-bit integer is pretty simple.

CREATE TABLE t0(c0 INTEGER PRIMARY KEY, ...);

8.5.4 LONGINT
Implemented as a 64-bit integer.

CREATE TABLE t0(c0 LONGINT, ...);

8.5.5 DECIMAL[(<precision> [, <scale>])]
Implemented as a 128-bit integer + 32 bits to hold sign and exponent. Default value for <precision> is 38
(the max.) and 0 for <scale>. This representation is identical to that of NSDecimalNumber. If you want
fixed-point numbers this is the data type for it. A popular use of DECIMAL is to hold currency values.

NOTE: FrontBase, by using a base 10 representation, does not lose precision. If you INSERT e.g.
1.23, this is the value that gets stored and returned, not 1.229994599 or whatever. This also applies to
the NUMERIC, FLOAT, REAL, and DOUBLE PRECISION (see below) data types.

CREATE TABLE t0(c0 DECIMAL, PROFITS DECIMAL(20,2), ...);

8.5.6 NUMERIC[(<precision> [, <scale>])]
Implemented as a 64-bit integer + 32 bits to hold sign and exponent. Default value for <precision> is 19
(the max.) and 0 for <scale>. NUMERIC can be used instead of DECIMAL if you don't need the 38-digit
precision (and thus reduce the storage requirement).

FrontBase for the Developer
Data Types

Users Guide FB-215

CREATE TABLE t0(c0 NUMERIC, SALARY NUMERIC(10,2), ...);

8.5.7 FLOAT[(<precision>)]
Implemented as a 64-bit integer + 32 bits to hold sign and exponent. Default value for <precision> is 19
(the max.).

CREATE TABLE t0(c0 FLOAT, C1 FLOAT(10), ...);

8.5.8 REAL
Implemented as a 64-bit integer + 32 bits to hold sign and exponent. Default value for <precision> is 19
(the max.). REAL and FLOAT are implemented identically, except that you can specify the maximum
precision when using FLOAT.

CREATE TABLE t0(c0 REAL, ...);

8.5.9 DOUBLE PRECISION
Implemented as a 128-bit integer + 32 bits to hold sign and exponent. Default value for <precision> is 38
(the max.). For many purposes this is the best choice for mapping an NSDecimalNumber/
java.math.BigDecimal. See Mapping of Foundation/Java objects into FrontBase Data Types on page 220
for details.

CREATE TABLE t0(c0 DOUBLE PRECISION, ...);

8.5.10 CHARACTER, CHAR
Implemented as the traditional fixed length character string. Please note that FrontBase supports Unicode
exclusively and stores all character strings in the UTF8 encoding. This means that character strings with
values other than ASCII will occupy more bytes than the number of characters. Most non-ASCII
characters, e.g. æøåÆØÅ, when encoded into the UTF8 format, occupy two bytes.

NOTE: The max. length of a CHARACTER value is 2GB.

CREATE TABLE t0(c0 CHAR(1), c1 CHARACTER(100000), ...);

FrontBase for the Developer
Data Types

FB-216 Users Guide

8.5.11 NATIONAL CHARACTER, NATIONAL CHAR, NCHAR
As FrontBase supports Unicode exclusively, the NATIONAL CHARACTER data type is mapped into
CHARACTER.

CREATE TABLE t0(c0 NATIONAL CHAR(1), c1 NCHAR(100000), ...);

8.5.12 CHARACTER VARYING, CHAR VARYING, VARCHAR
Implemented as the traditional variable length character string. The implementation of variable length
strings is very efficient, and there is no extra overhead associated with very long strings. Strings up to 16
bytes in length are stored directly in the row record (as if it was a fixed length string). A so-called spelling
table is associated with each table and all identical variable length strings inserted in the rows of a table
may be specified to be stored only once.

NOTE: Since FrontBase encodes varchars very efficiently, use of variable length strings is in general
recommended over fixed length strings.

CREATE TABLE t0(c0 VARCHAR(128), c1 CHARACTER VARYING(200000), ...);

8.5.13 NATIONAL CHARACTER VARYING, NATIONAL CHAR
VARYING, NCHAR VARYING

As FrontBase supports Unicode exclusively, the NATIONAL CHARACTER VARYING data types are
all mapped into CHARACTER VARYING.

CREATE TABLE t0(c0 NATIONAL CHAR VARYING(10), c1 NCHAR
VARYING(10000), ...);

8.5.14 BIT
The bit data type is conceptually a string of 1's and 0's, but is implemented as an opaque binary data type,
i.e. BIT(8) occupies one byte. See below as concerns EOF and BYTE.

CREATE TABLE t0(c0 BIT(32), C1 BIT(256)...);

FrontBase for the Developer
Data Types

Users Guide FB-217

8.5.15 BIT VARYING
As BIT, but with the obvious exception that the bit strings are variable in length.

CREATE TABLE t0(c0 BIT VARYING(32), c1 BIT VARYING(256)...);

8.5.16 BYTE
A simple wrapper for BIT, i.e. BYTE(n) is identical to BIT(n*8). This data type is not part of the SQL 92
standard, but has been introduced to better support EOF's automatic primary key generation. If you use
12-byte binary keys, EOF can automatically generate a primary key without doing a roundtrip to the
database server (and thus cause a transaction to be initiated).

CREATE TABLE t0(c0 BYTE(12), ...);

8.5.17 DATE
The traditional date data type. Please note that DATE does not include any time components. DATE
values are internally represented as seconds (2001-01-01 is zero) and are stored as NUMERIC(0) values.

CREATE TABLE t0(c0 DATE, ...);

8.5.18 TIME
Holds only the time component of a complete timestamp. TIME values ('12:34:23') are internally
represented as seconds and are stored as NUMERIC values. Please note that TIME values, which can be
negative, are assumed to be expressed in the server’s time zone, i.e. the server’s time zone is applied to the
time value when it is inserted.

CREATE TABLE t0(c0 TIME, ...);

8.5.19 TIME WITH TIME ZONE
As TIME, except that the time zone offset is included and stored with the time values ('12:34:23-08:00').
The explicit time zone is returned to clients.

CREATE TABLE t0(c0 TIME WITH TIME ZONE, ...);

FrontBase for the Developer
Data Types

FB-218 Users Guide

8.5.20 TIMESTAMP
Holds a complete timestamp value that includes both the date and time components. TIMESTAMP values
('2001-01-24 12:34:23') are internally represented as seconds (2001-01-01 is zero) and are stored as
NUMERIC values. Please note that TIMESTAMP values will be expressed in the server’s time zone, i.e.
the server’s time zone is applied to the time value when it is inserted. This means that TIMESTAMP
values can end up having a time zone that is different from the client!

CREATE TABLE t0(c0 TIMESTAMP, ...);

8.5.21 TIMESTAMP WITH TIME ZONE
As TIMESTAMP except that the time zone offset is included and stored with the time values ('2001-01-24
12:34:23-08:00'). The explicit time zone is returned to clients. This data type is needed if you want to be in
complete control over how time zone information is stored and displayed.

CREATE TABLE t0(c0 TIMESTAMP WITH TIME ZONE, ...);

8.5.22 INTERVAL
INTERVAL is actually two separate data types: a data type called year-month interval and a data type
called day-time interval.

A year-month interval is internally represented as months and is stored as a 32-bit integer.

A day-time interval is internally represented as seconds and is stored as a NUMERIC value.

One way to use intervals is when manipulating dates and timestamps, e.g. when adding a day or month:

DATE '2000-01-25' + INTERVAL '02' MONTH (result DATE '2000-03-25')

or

DATE '2000-02-28' + INTERVAL '02' DAY (result DATE '2000-03-01')

Example:
CREATE TABLE t0(c0 INTERVAL YEAR TO MONTH, c1 INTERVAL MONTH, ..);
CREATE TABLE t1(d0 INTERVAL DAY TO SECOND, c1 INTERVAL HOUR, ..);

FrontBase for the Developer
Data Types

Users Guide FB-219

8.5.23 BLOB
A Binary Large OBject is an opaque binary data type, i.e. the bytes you store are not interpreted in any
way and are returned in the same form as when inserted. FrontBase implements BLOBs very efficiently
which includes streaming on the server side as well as on the client side, i.e. no unnecessary copying. A
BLOB value can be up to 2 GB in size.

CREATE TABLE t0(c0 BLOB, ...);

8.5.24 CLOB
A Character Large OBject is a data type for very large character strings, i.e. strings that you don't want to
search on and where you would like the increased efficiency compared to normal
CHARACTER/VARCHAR values (which gets copied into e.g. INSERT or UPDATE SQL statements).
CLOBs are implemented as efficiently as BLOBs. CLOB values are encoded in the UTF8 format with
encoding and decoding taking place on the client side.

CREATE TABLE t0(c0 CLOB, ...);

8.5.25 BOOLEAN
Implemented as an unsigned byte. Please note that SQL 92 uses three-valued logic, i.e. the possible values
are FALSE (0), TRUE (1), and UNKNOWN (255).

CREATE TABLE t0(c0 BOOLEAN, ...);

FrontBase for the Developer
Mapping of Foundation/Java objects into FrontBase Data Types

FB-220 Users Guide

8.6 Mapping of Foundation/Java objects into FrontBase Data
Types

The following is a brief description of the recommended mapping of the most common Foundation/Java
objects into FrontBase data types.

8.6.1 String

Suggested Data Types Recommended Data Type

NSString
java.lang.String
java.io.Reader (for CLOB)

CHARACTER
VARCHAR
CLOB

VARCHAR

NOTE: If you are working with large strings and if you most likely are not going to perform searches
on the character strings, the CLOB data type can be a good choice. The main advantage of the CLOB
data type is that the string is sent to the database separately. That is, rather than the database having to
parse and copy a huge SQL statement, it can instead efficiently transfer the data on a binary channel.
VARCHAR is in general recommended over CHARACTER, as the implementation of VARCHAR is
very efficient and allows reuse of identical strings. You can use “open ended” VARCHAR definitions
(e.g. VARCHAR(1000000)) without worry for any performance penalty. The internal representation
of character strings is UTF8 with the encoding and decoding taking place on the client side, i.e.
handled by the native methods of NSString/java.lang.String.

8.6.2 Integer Numbers

Suggested Data Types Recommended Data Types

NSNumber
java.lang.Number

BOOLEAN,
SMALLINT,
INTEGER,
FLOAT,
REAL,
DOUBLE PRECISION

INTEGER
DOUBLE
PRECISION
depending on actual use

NOTE: As NSNumber/Number is a cover for the C/Java number data types, the FrontBase type to
choose depends on the actual use.

FrontBase for the Developer
Mapping of Foundation/Java objects into FrontBase Data Types

Users Guide FB-221

8.6.3 Decimal Numbers

Suggested Data Types Recommended Data Types

NSDecimalNumber
java.math.BigDecimal

NUMERIC,
DECIMAL,
REAL,
FLOAT,
DOUBLE PRECISION

DOUBLE PRECISION,
DECIMAL

NOTE: If you are using NSDecimalNumber for accurate calculations, that maps to DOUBLE
PRECISION (or DECIMAL if integer) directly. If you wish to reduce storage requirements, you can
use FLOAT/NUMERIC instead (the reduction is 8 bytes per value per row).

8.6.4 Dates

Suggested Data Types Recommended Data Type

NSCalendarDate
java.sql.Date
java.sql.Timestamp

DATE,
TIMESTAMP,
TIMESTAMP WITH TIME ZONE

TIMESTAMP

NOTE: TIMESTAMP WITH TIME ZONE is directly equivalent to the data provided by
NSCalendarDate. You might want to consider just TIMESTAMP if you don't have to deal with data in
different time zones or if you want data always displayed using the client’s time zone.

8.6.5 Time

Suggested Data Types Recommended Data Type

java.sql.Time TIME,
TIME WITH TIME ZONE

Either

NOTE: java.sql.Time is a simple wrapper (or just a plain gruesome hack) around java.sql.Date.

FrontBase for the Developer
Mapping of Foundation/Java objects into FrontBase Data Types

FB-222 Users Guide

8.6.6 Stream Data

Suggested Data Type Recommended Data Type

NSData
java.io.InputStream

BLOB BLOB

8.6.7 Primary Key

Suggested Data Types Recommended Data Type

INTEGER,
BYTE(12)

Either

NOTE: The BYTE(12), which is a cover for BIT(96), data type should be used if the generation of
primary key is done by Apple’a Enterprise Objects Framework (EOF) (client side calculation facility).
Any FrontBase data type can be used for a primary key and since all numeric data types are
represented as exact numeric values, it is safe to use e.g. DOUBLE PRECISION or TIMESTAMP as a
data type for a primary key column. However, EOF does not allow certain data types (DOUBLE
PRECISION, BLOB and CLOB) to be specified for primary key columns, so you will need to
consider this if you are using EOF. FrontBase supports multi-column or compound primary keys,
while you should apply some caution if you are using compound keys with EOF.

FrontBase for the Developer
Primary Keys and Auto Generation

Users Guide FB-223

8.7 Primary Keys and Auto Generation
FrontBase supports, as required by the SQL 92 standard, multiple-column primary keys, but in the case of
single-column integer primary keys, FrontBase can help you in generating such keys.

8.7.1 Generation of Keys
In FrontBase, each table has an associated counter. The counter is accessed and incremented by the
following SQL statement:

SELECT UNIQUE FROM <table>;

that returns a single row with a single integer column. The SELECT UNIQUE construct can also be used
as a scalar sub-query:

INSERT INTO <table> VALUES(SELECT UNIQUE FROM <table>, ...);

When a table is created, the associated counter is set to an initial value of 1000000.

The counter can be set in two ways:

SET UNIQUE=<value> FOR <table>;

or

SET UNIQUE FOR <table>(<column>);

with the latter form being a short-hand for:

SET UNIQUE=(SELECT MAX(<column>)+1 FROM <table>) FOR <table>;

A primary key column in a new row can be automatically set by specifying a special default value:

ALTER TABLE <table> ALTER <column> SET DEFAULT UNIQUE;

If an explicit value for the column isn't given in an INSERT statement, the default will be used.

FrontBase for the Developer
Row Level Privileges

FB-224 Users Guide

8.8 Row Level Privileges

8.8.1 Defining
FrontBase offers a unique feature called Row Level Privileges, which allows you to specify access
privileges for individual rows. Each row is said to be owned by a specific user and belonging to a specific
group. Access privileges (SELECT, UPDATE and DELETE) for a row can be specified for the owner, the
group and the world.

8.8.2 Deploying
To use the Row Level Privileges feature, a given database has to be initialized with the feature given as an
option:

FrontBase -rlpriv <database-name>

You can also specify the -rlpriv option when creating a database via the FrontBaseManager.

Once created, the option is recorded in the database, i.e. you don't need to specify the option when the
database server is subsequently stopped and started.

8.8.2.1 Managing the Meta Data

CREATE GROUP <group-name>;
 -- CURRENT_USER must be _SYSTEM
DROP GROUP <group-name> RESTRICT|CASCADE;
 -- CURRENT_USER must be _SYSTEM

ALTER GROUP <group-name> ADD USER <user-name>;
 -- CURRENT_USER must be _SYSTEM
ALTER GROUP <group-name> DROP USER <user-name>;
 -- CURRENT_USER must be _SYSTEM

ALTER USER <user-name> SET DEFAULT GROUP <group-name>;
 -- CURRENT_USER must be _SYSTEM or <user-name>
ALTER TABLE <table-name> SET DEFAULT PRIVILEGES(<row-privileges>)
[USER <user-name>];
 -- CURRENT_USER must be _SYSTEM or <user-name>, if no user name
 -- is given, the current user is used

FrontBase for the Developer
What Collations can do for You

Users Guide FB-225

<row privileges> ::= <row privs> | <row privileges> , <row privs>
<row privs> ::= <owner privs> | <group privs> | <world privs>
<user privs> ::= USER = * | <priv mask>
<group privs> ::= GROUP = * | <priv mask>
<world privs> ::= * = * | <priv mask>
<priv mask> ::= <priv> | <priv mask> + <priv>
<priv> ::= SELECT | UPDATE | DELETE

Example:

ALTER TABLE t0 SET DEFAULT PRIVILEGES(USER=*, GROUP=SELECT+UPDATE,
*=SELECT);

8.8.2.2 Managing the Content Data

UPDATE <table-name> SET PRIVILEGES(<row privileges>) [WHERE <cond
expr>];
UPDATE <table-name> SET GROUP <group-name> [WHERE <cond expr>];
UPDATE <table-name> SET USER <user-name> [WHERE <cond expr>];
 -- CURRENT_USER has to either own the row or be _SYSTEM

8.8.2.3 SELECTing the Access Privileges for a Row
The owner, group and privileges for a given set of rows can be fetched as follows:

SELECT USER, GROUP, PRIVILEGES FROM <table> WHERE <cond expr>;

By wrapping the SELECT in a VIEW, the values can be used in queries:

CREATE VIEW(row_owner, row_group, row_privs) t0_privs SELECT USER,
GROUP, PRIVILEGES FROM t0;
SELECT * FROM t0_privs WHERE row_owner = '<user-name>';

8.9 What Collations can do for You
Collations are basically a way for you to control how two characters should be compared or rather whether
two given characters compare equal, less than or greater than.

FrontBase for the Developer
What Collations can do for You

FB-226 Users Guide

Why bother with this?

There are two main reasons for having to bother with collations:

1. International characters
2. Case insensitive compare operations.

8.9.1 International Characters
FrontBase implements Unicode and thus supports use of all the so-called international character sets
including Kanji, Hangul etc. The positional value of the international characters in the Unicode universe
can not be used for ordering two characters, at least if the ordering is to turn out as most people expect it.

An example: The French character ç (Latin Small Letter C With Cedilla) has the ordinal value of 231
(decimal) while a lower case C has 99 as ordinal value. If e.g. ç and d are compared, d would then
compare to be smaller than ç, which may not be what you want.

8.9.2 Case Insensitive Compare Operations
Normally character strings are stored in the database using the same case as they were entered by a user.
Some users prefer to enter just lower case characters, other prefer upper case characters, and a few uses
capitalization as in FrontBase. When searching, users generally don't know in which case characters were
entered, i.e. a search has to take care of this.

This can be dealt with by doing something like:

SELECT * FROM t0 WHERE UPPER(city) = 'COPENHAGEN';

The problem with above SELECT is that an index defined on T0.CITY cannot be used, i.e. the SELECT
will execute slower than if an index could be used.

By defining a so-called COLLATION, you can effectively decide how characters are to be ordered, i.e.
mapping the ordinal values into ordering values. This means for example that if 'a' is mapped into the
same ordering value as 'A', 'a' is considered to be equal to 'A'.

Included with any FrontBase distribution is a collation table called CaseInsensitive.coll1 (located in the
<FB home>/Collations directory) and as implied by its name, this collation can be used for doing case
insensitive compares.

First you need to define the collation:

CREATE COLLATION CASE_INSENSITIVE

FrontBase for the Developer
What Collations can do for You

Users Guide FB-227

 FOR INFORMATION_SCHEMA.SQL_TEXT
 FROM EXTERNAL('CaseInsensitive.coll1');
COMMIT;

The collation is then used when creating a table:

CREATE TABLE t0(
 ...
 db VARCHAR(128) COLLATE CASE_INSENSITIVE,
 ...
);
CREATE INDEX ON t0(db);
COMMIT;

The specified collation will now automatically be used whenever a db column value is compared with
another string, including compares done when building an index.

Example:

INSERT INTO t0(db) VALUES 'frontbase', 'FrontBase', 'FRONTBASE';
COMMIT;

SELECT db FROM t0 WHERE db = 'FrOnTbAsE'; -- returns 3 rows

SELECT db FROM t0 WHERE db LIKE ‘f%’; -- returns 3 rows

If for some reason you want to compare case sensitive, you need to define an identity collation (using the
FBUnicodeManager application) and save the collation as e.g. CaseSensitive.coll1 in the <FB
home>/Collations directory.

CREATE COLLATION CASE_SENSITIVE
 FOR INFORMATION_SCHEMA.SQL_TEXT
 FROM EXTERNAL('CaseSensitive.coll1');
COMMIT;
SELECT db FROM t0 WHERE db = 'FrontBase' COLLATE CASE_SENSITIVE;
 --returns 1 row

SELECT db FROM t0 WHERE db LIKE 'F%' COLLATE CASE_SENSITIVE;
 -- returns 2 rows

FrontBase for the Developer
What Collations can do for You

FB-228 Users Guide

Please note that the above two SELECTs will not use the index created on column db, i.e. for large tables
these two SELECTs will execute slower than if the index could be used.

Now what if you want to search case insensitive and then limit the result set further by requiring that an
exact case match should also apply? Easily done:

SELECT db FROM t0 WHERE
 db = 'FrontBase'
 AND
 db = 'FrontBase' COLLATE CASE_SENSITIVE;

The first WHERE clause will return 'frontbase', 'FrontBase', 'FRONTBASE', while the second WHERE
clause will reduce the result to 'FrontBase';

FrontBase for the Developer
Embedding FrontBase into your own Application or Solution

Users Guide FB-229

8.10 Embedding FrontBase into your own Application or
Solution

When an end-user downloads and installs FrontBase for a given platform, the installation will typically go
into a default location specific for the platform. FrontBase is, after installation, then accessible to all
applications etc. for which access is granted.

When FrontBase is embedded into another application or solution, it is normally desirable to make sure
that FrontBase will operate only with the given application and independently from a normal end-user
version of FrontBase that may already be installed.

Technically this means that:

1) FrontBase is installed ("embedded") inside the normal directory structure of the parent application
or solution, i.e. the normal FrontBase installer package is not used.

2) An application or solution-specific license string is to be used. This license string is generic, i.e. it is
not tied to a specific IP or MAC address.

3) The FBExec, which is like a DNS service for FrontBase databases on a given host, is not used,
meaning that the parent application or solution will have to connect to the database using a port
number. The port number will be embedded (hard coded) into the license string.

4) An embedded license string allows for the application or solution to work with one (1) FrontBase
database.

8.10.1 Directory Structure
Although FrontBase can be fully embedded into the directory structure of the parent application, there still
has to be the notion of a FrontBase directory structure as well. The FrontBase server simply uses a
"relative to where I am" scheme to locate the few pieces it needs, including the actual database file.

The FrontBase directory structure and files for a normal end-user installation is usually:

FrontBase/Collations/CaseInsensitive.coll1
FrontBase/Databases
FrontBase/Java/frontbasejdbc.jar
FrontBase/Library/DefinitionSchema.sql
FrontBase/Library/InformationSchema.sql
FrontBase/Library/OpenBaseImport.sql
FrontBase/Library/KeyWords.txt
FrontBase/Library/FBSQLErrors.array
FrontBase/Library/*.ucm

FrontBase for the Developer
Embedding FrontBase into your own Application or Solution

FB-230 Users Guide

FrontBase/LicenseString
FrontBase/TransactionLogs
FrontBase/Translations/ToLower.trans
FrontBase/Translations/ToUpper.trans
FrontBase/bin/
FrontBase/include/*
FrontBase/lib/libFBCAccess.a

The function of each subdirectory in the FrontBase directory is:

Collations Placeholder for all collation definitions to be used by the given database schema.
If your schema doesn't make use of collations, this directory can be empty or
taken out.

Databases Will hold the actual database file. Although the actual database file can be located
anyplace in the host file system, it is recommended to use this directory as it
makes support easier.

Java Holds the JDBC driver for FrontBase. This directory can be empty or taken out.

Library Holds various housekeeping files incl. files used during bootstrapping of a new
database. If a parent application includes a pre-bootstrapped database, the
InformationSchema.sql and DefinitionSchema.sql files are not needed. If the
FrontBase is required to, as part of an installation, to bootstrap a new database,
these two files MUST be available in the Library directory.

FBSQLErrors.array This file is a list of paradigm error messages, used by client applications to map
error messages returned by the server into textual error messages. A parent
application will typically embed (or simply ignore) this file into it self.
FBSQLErrors.array can be edited for providing localized error messages. This file
is NOT used by the server.

.ucm The .ucm files are used by client applications to map the UTF8 encoded strings,
returned by the server into the chosen character set. Client applications can decide
to use other means of mapping UTF8 into a given character set. The .ucm files are
NOT used by the server. Other files in this directory can be taken out.

TransactionLogs Created and maintained exclusively by the server. This directory is NOT to be
deleted.

Translations Holds two translation files for support of UPPER and LOWER (SQL functions).
If the parent application doesn't use LOWER and UPPER, this directory can be
empty or taken out.

FrontBase for the Developer
Embedding FrontBase into your own Application or Solution

Users Guide FB-231

bin Holds the executables (the binaries) of a FrontBase distribution. Only the
FrontBase server executable is needed, but the sql92 (command line tool)
executable could be advantageous to include as well.

include Holds various files used by a developer. This directory can be empty or taken out.

lib Holds various files used by a developer. This directory can be empty or taken out.

8.10.1.1 Embedded Deployment
The minimal FrontBase directory structure that can be deployed in an embedded situation is:

FrontBase/Databases/<pre-bootstrapped database>
FrontBase/LicenseString
FrontBase/TransactionLogs
FrontBase/bin/FrontBase

The recommended FrontBase directory structure that can be deployed in an embedded situation is:

FrontBase/Collations/CaseInsensitive.coll1
FrontBase/Databases
FrontBase/Library/DefinitionSchema.sql
FrontBase/Library/InformationSchema.sql
FrontBase/LicenseString
FrontBase/TransactionLogs
FrontBase/Translations/ToLower.trans
FrontBase/Translations/ToUpper.trans
FrontBase/bin/FrontBase
FrontBase/bin/sql92

8.10.2 Starting the FrontBase Server - Windows NT/2000/XP
The Windows platforms deviates enough from all other supported platforms to warrant its own
description.

During the installation process, the FrontBase server and database must be installed as a normal service
application:

<drive>:<FB home>\FrontBase\bin\FrontBase -install <database-name>

FrontBase for the Developer
Embedding FrontBase into your own Application or Solution

FB-232 Users Guide

The FrontBase server can then be started and stopped like any other service application, e.g. automatically
via the Service Control Manager and/or programmatically by the parent application.

Currently, the server will, per default, try to create the database file in C:/usr/FrontBase/Databases. By
defining a system wide environment variable called FB_HOME_DRIVE, the Databases directory can be
located where appropriate. Typically the FB_HOME_DRIVE variable is, in an embedded situation,
defined to be:

<drive>:<FB home>\FrontBase\

8.10.3 Starting the FrontBase Server – non-Windows Platforms
The server is simply started as any other background application:

<FB home>/FrontBase/bin/FrontBase [<options>] <database-name> &

If there is no path information prefixing the database name, the server will assume that the database
resides in the Databases directory.

8.10.3.1 How to Tell the Server what Port Number to use
The port number is hard-coded in the LicenseString file, any use of the –port <number> option is ignored.

